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のまとめノートである．ただし本稿は教科書の内容をほぼ網羅しているものの，内容を多少，取捨選択してあ

る．さらに本稿には筆者の誤りや勘違いが潜んでいるかもしれないことをあらかじめ断っておく．言うまでも

なく，原著を当たるに越したことはない．7.2節，7.3節に関しては表面的に教科書の内容をまとめはしたも

のの，ほとんど理解が及ばなかったことを告白しておく．著者らが教科書のサポートページを公開している：

https://web.tuat.ac.jp/~takada/nonlinear_rheology/

なお本稿の他にも理論物理の各種ノートを以下のページで公開している．

http://everything-arises-from-the-principle-of-physics.com/

「まえがき」のまとめ・抜粋

本稿では粉粒体の物理学を専らレオロジーの観点からまとめる．粉粒体を含め日常スケールの物理学の進展

は十分ではない．

本書の前半では，連続体力学の基礎，レオロジーの一般論，液体論の基礎を手短に紹介し，後半で粉

体が固体的状態にあるときのレオロジー，粒子がばらばらに気体のように動く際の運動論，一種の固液

相転移であるジャミング転移について最近の研究成果に基づき，粉体の非線形レオロジーの最前線を紹

介する．(iii頁より)
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第 1章　粉体の非線形レオロジーの概観

1.1　粉体の非線形レオロジーとは

我々は粉体の集団運動の記述に非平衡統計物理の伝統的手法を適用し，延いてはレオロジーの一般論の理解

を目指す．レオロジー (rheology)は物質の変形と流動を連続体力学に基づき記述する学問であり，固体力学

と流体力学の双方にまたがる学問と言える．

粉体とは，巨視的なサイズを持つ固体粒子の集団のことを指す．粒径が 0.005mm以下である「粘土」のよ

うに小さな粒子の集団は，粒子間引力が顕著でありペースト状になる．そこで典型的な粉体としては，粒径

0.074–2mmの「砂」のようなサイズの粒子集団に興味が持たれる．実験物理では粒径分布が制御可能で，摩

耗や変形に耐え得るガラスビーズやスチールボールが好んで用いられる．他方で理論物理の観点からは，斥力

相互作用をする球形の巨視的粒子として粉体を捉えられる．ここで捨象される粒子の微小変形や振動，音波放

射，熱化，空気抵抗などにより，相互作用は散逸を伴うことになる．

巨視的な粒子は熱揺動によって動かず，したがって温度の影響を受けないため，しばしば粉体は温度ゼロの

系と呼ばれる．(溶媒に浸かったコロイド粒子も，粒径が十分大きいと揺動力の影響を受けない．) ただし例え

ば第 6章ではある種の「温度」を──あくまで従属変数としてではあるが──導入する．

さて，静止状態にある粉体に図 1 (a)のように剪断歪 (せんだんひずみ)を加えるとき，歪は γ := l/H で定

義される．歪 γ が小さいときには，粉体集団は弾性的な応答を示す固体のように振舞う．ところが歪が臨界

値を超えると，粒子配置の組み換え等の不可逆的な変形 (塑性変形)が生じる．塑性領域は玉突き状の粒子の

動きを伴って雪崩のように拡がっていく (塑性流動)．歪を増すと間欠的な塑性流動の頻度が高まり，遂には

粒子集団が定常的に流れるようになる．この流動状態の制御変数としては歪そのものよりも，むしろ剪断率

γ̇ := dγ/dtが用いられる．これは歪速度 (速度勾配)に他ならない［γ̇ = l̇/H］．また剪断応力 (ストレス)の

歪速度 γ̇ に対する比として定義される粘性率が，しばしば流動状態を特徴付ける量として用いられる．粘性率

が γ̇ に依る流体は非 Newton流体と呼ばれ［2.5節の最終段落も見よ］，粉体の流れは典型的な非 Newton流

体である．なお現実的な系では図 1 (b)のようにバルクが境界についていけなくなり，γ̇ は非一様となる．し

かし我々は γ や γ̇ が空間的に均一な制御変数となる，理想化されたレオロジーを扱う．

粉体のレオロジーの特徴の 1つは，例えば斜面流に見られるように，気体，液体，固体の特徴が 1つの実験

で同時に現れ得る点にある．しかし我々はそれらの特徴を分離して個別に記述する．また非平衡統計力学の手

図 1 境界を引っ張ることで系に剪断をかける場合の模式図．(a)系が境界と一緒に動く場合．(b)剪断歪

が大きくなり，系が境界についていけなくなった場合．
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法を導入するために，あえて境界や重力の影響を直接考慮しない理想化された形で，粉体のレオロジーを記述

することを試みる．

1.2　歴史的回顧

• 粉体の物理は新しい統計力学を建設するという 1990年頃の当初の期待とは裏腹に，堅実な物質科学と

して進展した．これまでに導入された統計力学的手法は粒子配置の予言能力がないため，粒子や接触点

の配置情報のインプットが必要であり，理論として自立していない．これは粒子の僅かの接触点の変化

が連鎖的に粒子配置の変化をもたらすという，高密度粒子系に共通の問題に起因する困難である．

• 粒子が硬く接触時間を無視できるハードコア極限をとった理想的な粉体モデルについて，統計力学に基
づき何が言えるかを整理するのも良い時期に来ている．［4.1 節の最終段落で導入される剛体球ポテン

シャルで記述されるハードコア粒子に対して，力積を有限に保ちながら (斥力) → ∞, (接触時間) → 0

である．］

• 非線形レオロジーの主たる対象は高分子やコロイドである．しかしながらコロイドで観測される非線形
レオロジー現象の多くは，溶媒のない粉体のみでも観測可能である．

1.3　ジャミングとシアジャミング

本節では興味のある現象として，ジャミング，不連続シアシックニング，シアジャミングについて簡単に紹

介する．ジャミング転移の理論は第 7章で取り上げる．他方で不連続シアシックニングとシアジャミングは粒

子間摩擦由来の現象と考えられており*1，満足のいく理論的説明は未だなされていない．

1.3.1　ジャミング

密度が低い場合には粒子が互いに重ならない配置が可能である．ところが外圧をかけて系を圧縮すると，あ

る臨界密度を境に粒子同士の接触による内圧が生じて，その圧力ではそれ以上圧縮できなくなる．このとき

外圧を除いても内圧は有限に留まる．このように (動いていない)粒子系の圧力がゼロから有限になる転移を

ジャミング転移といい，その密度をジャミング密度あるいは単にジャミング点と呼ぶ．ジャミング転移した系

では接触した粒子のネットワークを介した力の伝播 (応力鎖)がパーコレートする［端から端まで途切れず繋

がる (パーコレーション)］．

粒子が熱揺動で動かないという意味ではジャミング転移は温度ゼロの転移である．他方で有限温度で粒子が

動いている状態から動かなくなる転移は，粗く言えばガラス転移と呼ばれる．これらのアナロジーに触発され

て文献 A. Liu and S. Nagel, Nature (London) 396, 21 (1998)では図 2のような相図が定性的に描かれ，ガ

ラス転移とジャミング転移の統一的な理解を動機付けた．

1.3.2　不連続シアシックニング

非 Newton流体に対して

• シアシニング (shear thining) · · · · · · 剪断率 γ̇ とともに粘性率が下がる現象

– マヨネーズやケチャップなど

*1 ［摩擦は抗力の接線成分として定義され，］粒子間相互作用が法線方向のみの系は，散逸があっても摩擦なし系と呼ぶ．
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図 2 ジャミングの相図

図 3 不連続シアシックニングの模式図

– かき混ぜることで溶液中の高分子等のネットワークが切断されてサラサラになる

• シアシックニング (shear thickning) · · · · · · 剪断率 γ̇ とともに粘性率が上がる現象

– コーンスターチや片栗粉など

– かき混ぜることで粒子同士の接触が増し，粒子間摩擦が大きくなり抵抗力が増大する

• 不連続シアシックニング · · · · · · 特に粘性率が不連続的に変化する場合のシアシックニング
– コーンスターチ等のコロイド粒子系のみならず，溶媒のない粉体系でも観測される

– 平衡系の 1次相転移の場合と同様にヒステリシスがある：すなわち γ̇ を徐々に増大または減少

させる際に準安定な分岐が現れ，遂には不連続に粘性率が変化する (図 3)．

一般に流布している，コーンスターチ溶液上を走ることができる理由や防弾ジョッキのメカニズムを不連続

シアシックニングに求める説明は誤りである．実際，不連続シアシックニングは空間的に一様な接線応力の変

化が持続する定常過程であるのに対し，例えばボールを溶液に落とした際の硬化現象では接線応力の上昇は僅

かであり，圧力が局所的に短時間だけ上昇するに過ぎない (付録 1.5節参照)．
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図 4 (a) 典型的な負のダイラタンシーとダイラタンシーを示す模式図．(b) はコロイド系，(c) は粉体系

で見られる典型的な応力歪曲線．

ここでダイラタンシー (dilatancy)についても説明しておく．ダイラタンシーとは剪断歪に伴う体積膨張お

よびそれによる応力の低下である．ただし歪がある程度小さいうちは，一般に体積圧縮 (負のダイラタンシー)

が起きる．これは初期に不安定な平衡配置にあった粒子が，より安定な配置に移行する過程としてイメージで

きる．このとき応力は初め Hookeの法則に従い歪に比例して上昇し，次いで非線形領域に入りピークを迎え

る．さらに歪を増すとダイラタンシーにより突然応力が低下し (降伏点)，降伏値より大きい歪では応力一定の

塑性流動が起きる．このとき粒子が互いを乗り越えてながら配置を変えており，その結果として体積が膨張す

ると考えられる．(以上，図 4 (a),(b)を見よ．)

これに対し粉体では歪と応力の関係は，典型的には図 4 (c)のようになる．至るところで配置変化等に伴う

応力の不連続な変化があり，有限温度系に比べて降伏点がはっきりしない．ただしサンプル平均をとると，弾

性領域から塑性領域に滑らかに遷移する．

1.3.3　シアジャミング

系の密度 (体積分率 φ)と剪断応力の平面におけるジャム相と非ジャム相は，粒子間摩擦のない系では図 5

(a)のように単純に分離しており，これは図 2における温度 T = 0の相図に対応する．これに対し粒子間摩擦

がある系では，ジャミング点 φJ より低い密度でジャミングが起きるだけでなく，図 5 (b)のように有限の［す

なわちゼロでない］剪断応力 (したがって有限歪) において φS でジャミングが起きる．この現象はシアジャ

ミングと呼ばれる．またシアジャミングが起きる点より下ではフラジャイル［fragile］と呼ばれる脆弱な相に

なっている．

• シアジャミングの概念はまず実験の論文
– D. Bi, J. Zhang, B. Chakraborty, and R. P. Behringer, Nature (London) 480, 355 (2011).

で紹介された．(相図 5も同文献に基づく．)

• その後の論文では，とりわけシアジャミングと不連続シアシックニングの関係を論じた
– I. R. Peters, S. Majumdar, and H. M. Jaeger, Nature (London) 480, 355 (2011).

– A. Fall, F. Bertrand, D. Hautemayou, C. Mezière, P. Moucheront, A. Lemâıtre, and G. Ovarlez,

Phys. Rev. Lett, 114, 098301 (2015).

等の実験が興味深い．

• これらの関係は数値的に論文
– M. Otsuki and H. Hayakawa, Phys. Rev. E 101, 032905 (2020).
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図 5 (a)摩擦がないときのジャミング相図．(b)粒子間摩擦があるときの相図．φJ はジャミング点，φS

はシアジャミング密度である．

でほぼ明らかになった．

• 面白いことに，密度を上げると同じ歪であっても剛性率が下がる．これをソフト化という．
これらの現象は必ずしも粒子間摩擦を必要としないものの，粒子間摩擦があると顕著になる．

• また観測状態の歪を一定にしても，初期歪に応じてシアジャミングやソフト化を観測できる．
– S. Dagois-Bohy, E. Somfai, B. P. Tighe, and M. van Hecke, Soft Matter 13, 9036 (2017).

– M. Otsuki and H. Hayakawa, Phys. Rev. Lett. 128, 208002 (2022).

すなわち，これらの現象は履歴効果と捉えられる．

• さらに振動歪では，シアジャミングが起こり始める歪は，振動の位相に依存する．［概念的には位相と
歪を軸として相図を描けると考えられる．］またフラジャイル領域と非ジャム領域の境界で不連続シア

シックニングが生じる．

– M. Otsuki and H. Hayakawa, Phys. Rev. E 101, 032905 (2020).

今後の課題として，これらの機構を微視的理論に基づき定量的に説明することが求められる．

1.4　本書の構成

まず第 1段落の特筆事項を抜粋する．

なお，ニュートン流体の従うナビエ・ストークス (Navier-Stokes) 方程式は移流項［式 (2.10) の

(v · ∇)v の項］の影響で非線形方程式であるが，レオロジー的観点に基づくとストレステンソルを平衡
状態から速度勾配テンソルで展開した最低次のニュートン流体として扱えるので［この意味で］線形レ

オロジーの範疇になる．

［構成方程式 (歪 (速度)と応力の関係)が非線形になることが「非線形レオロジー」という呼称の所以と考えら

れる (2.5節末尾も見よ)．］

次に最終段落を引用する．
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大雑把に言って第 2–4章は，よく知られた事実のまとめであり，その記述内容についてより詳しく論

じた教科書を見つけることは容易である．一方，第 5章以降は最新の研究成果も含めており，これらを

網羅した類書はおそらくないだろう．したがって，本書の後半部分には著者の嗜好が色濃く出ており，

本書をユニークたらしめている．しかし，そのことが本書の価値の客観性を失わせるおそれもあるうえ

に，賞味期限が短いおそれもある．

［とは言え内容が偏っていることは，必ずしも知識を得る妨げにはならない；それどころか，その役に立つ場

合さえある．］

第 2章

• 著者自身のレクチャーノート
[21] 早川尚男，連続体力学，京都大学 OCW，https://ocw.kyoto-u.ac.jp/course/9/.

• 定評ある過去の教科書
[22] 巽友正，流体力学 (培風館，1982).

[23] 巽友正，連続体の力学 (岩波書店, 1995).

[24] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959).

[25] L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon Press, Oxford, 1959).

第 3章

第 2章のレクチャーノート [21]と Landau=Lifshitz[24–25]の他に，以下の文献が挙げられる．

[7] 早川尚男，散逸粒子径の力学 (岩波書店，2003).

[26] 中川鶴太郎，レオロジー第 2版 (岩波, 1978).

[27] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford Univ. Press, Oxford, 1986).

[28] 早川尚男，那須野悟，粉体の物理 現代物理学最前線 1 (共立出版，2000).

第 4章

第 3章の [27]に加えて，基本的な文献として以下が挙げられる．

[29] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd Ed.

　　　 (Academic Press, London, 2006).

[30] B. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1974).

[31] L. E. Reichl, A Modern Course in Statistical Physics, 1st Ed. (Univ. Texas Press, Austin, 1980).

[32] A. Santos, in 5th Warsaw School of Statistical Physics (Warsaw Univ. Press, Warsaw, 2013).

第 5章

• 基本的文献
[5] C. E. Maloney and A. Lemáıtre, Phys. Rev. E 74, 016118 (2006).

• 著者の論文
[33] M. Otsuki and H. Hayakawa, Soft Matter 19, 2127 (2023).

[34] D. Ishima. K. Saitoh, M. Otsuki, and H. Hayakawa, Phys. Rev. E 107, 034904 (2023).
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第 6章

• 粉体ガスの運動論の教科書
[35] B. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases

　　 (Oxford Univ. Press, Oxford, 2004).

[36] V. Garzó, Granular Gaseous Flows — A Kinetic Theory Approach to Granular Gaseous Flows

　　 (Springer Nature, Cham, 2019).

• そのベースとなっている希薄気体の運動論
[37] S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd Ed.

(Cambridge Univ. Press, Cambridge, 1970).

[38] 早川尚男，非平衡統計力学 (サイエンス社 SGC ライブラリ 54, 2007).

• 慣性サスペンションの文献
[39] D. L. Koch and R. J. Hill, Annu. Rev. Fluid Mech. 33, 619 (2001).

[40] H. Hayakawa and S. Takada, Prog. Theor. Exp. Phys. 2019, 08301J (2019).

[41] H. Hayakawa, S. Takada, and V. Garzó, Phys. Rev. E 96, 042903 (2017);

　　 [Erratum] 101, 069904(E) (2020).

[42] S. Takada, H. Hayakawa, A. Santos, and V. Garzó, Phys. Rev. E 102, 022907 (2020).

第 7章

基本文献は以下である．

[43] G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

[44] L. Berthier, H. Jacquin, and F. Zamponi, Phys. Rev. E 84, 051103 (2011).

[45] F. Zamponi, Theory of Simple Glasses: Exact Solutions in Infinite Dimensions

　　　 (Cambridge Univ. Press, Cambridge, 2020).

[46] M. Potters and J.-P. Bouchaud, A First Course in Random Matrix Theory: For Physicists,

　　　 Engineers and Data Scientists (Cambridge Univ. Press, Cambridge, 2021).

[47] H. Ikeda and M. Shimada, Phys. Rev. E 106, 024904 (2022).

1.5　付録：衝撃に伴う液体の硬化現象について

1.3.2項で述べたように，コーンスターチ溶液の上を走ることができる理由を不連続シアシックニングに求

めるのは誤りである．実際，論文

Pradipto and H. Hayakawa, Phys. Rev. Fluid 6, 033301 (2021).

では懸濁液*2に球体を落下させるシミュレーションが行われた．すると図 6のように，衝突球の直下において

垂直応力は増大したものの，剪断応力の増加はその 1/4程度以下となり，ずっと小さかった*3．また，この応

力の上昇は時間的にも空間的にも局所的であった．このように衝撃に伴う液体の硬化現象は，接線応力の上昇

*2 固体粒子が液体中に浮遊している状態であり，サスペンションとも呼ばれる (教科書 p.13の脚注)．
*3 ただし壁の近傍では剪断応力も垂直応力と同程度に大きな値をとった．
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図 6 衝突直後における垂直応力 σzz と剪断応力 σzx の模式図

が一様かつ定常的に起きる不連続シアシックニングとは，似て非なる現象である．
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第 2章　連続体力学の基礎

2.1　連続体力学の必要性

粉体物理の究極の目的の 1つは粉体集団を連続体として特徴付けることである．粉体は各粒子の動きが目に

見えており，粒子スケールの運動がマクロな集団運動にも影響を与えるという意味では本来，連続体力学の適

用範囲外にある．しかしながら連続体としての粉体の理解は着実に進歩しており，状況を限定すれば定量的に

正しい結果も得られるようになった．そこで本章では準備として，連続体の基礎をごく簡単にまとめる．

2.2　連続の式

初期位置X でラベルされる連続体のトレーサー粒子の，時刻 tにおける位置 r = r(X, t)で評価した関数

を F (X, t) = f(r(X, t), t)と書こう．その時間変化率は［連鎖律］

d

dt
F (X, t) =

D

Dt
f(r, t),

D

Dt
:=

∂

∂t
+ v · ∇ (2.1)

で与えられ，ここに v := (d/dt)r(X, t)は粒子の速度，また∇ := (∂/∂x, ∂/∂y, ∂/∂z)T であり，Dt := D/Dt

は Lagrange微分と呼ばれる．ここで初期時刻での［連続体に固定した］領域 Ω(0)の時刻 tでの領域を Ω(t)

と書くと，
d

dt

∫
Ω(t)

drf(r, t) =

∫
Ω(t)

dr{Dtf + f∇ · v} (2.2)

が成り立つことを示そう．r(t)［:= r(X, t)］とX の成分をそれぞれ xα(t), Xβ として Jacobian［の絶対値］

J(t) := | det(∂xα(t)/∂Xβ)|を導入すると，恒等的に∫
Ω(t)

drf(r, t) =

∫
Ω(0)

dXJ(t)F (X, t)

と変数変換できる．すると

d

dt

∫
Ω(t)

drf(r, t) =

∫
Ω(0)

dX

{(
d

dt
F (X, t)

)
J(X, t) + F (X, t)

d

dt
J(X, t)

}
=

∫
Ω(0)

dXJ

{
dF

dt
+ F (∇ · v)

}
=

∫
Ω(t)

dr{Dtf + f∇ · v} (2.3)

となるので，上式 (2.2) が得られる．ただし第 2 の等号では dJ(t)/dt = (∇ · v)J(t) を用いた［本稿次節で
補足］．

関数 f(r, t)を質量密度 ρ(r, t)に選ぶと，［連続体に固定した領域 Ω(t)内の質量は不変なので］式 (2.2)は

0 =
d

dt

∫
Ω(t)

drρ(r, t) =

∫
Ω(t)

dr{Dtρ+ ρ∇ · v} (2.4)

を与える．これが任意の積分領域 Ω(t)に対して成り立つため，最右辺の被積分関数はゼロである．こうして

質量保存則は［連続の式］
∂tρ(r, t) +∇ · (ρ(r, t)v(r, t)) = 0 (2.5)
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で表される．

質量保存則 (2.5)の下では式 (2.2)とより

d

dt

∫
Ω(t)

drρf =

∫
Ω(t)

drρDtf (2.6)

が成り立つ［本稿次節で確認］．

次に運動量保存則を考える．領域 Ω(t)の連続体が持つ運動量 p(t) :=
∫
Ω(t)

drρv を用いて，運動方程式は

dp

dt
= Ftot (2.7)

と書ける．ここで Ftot は領域 Ω(t)に働く力であり，一般に体積力と面積力から成ると考えられる．そこで単

位体積あたりに働く体積力を ρK ［したがってK は単位質量あたりの力 (重力場など)］，ストレステンソル

を←→σ とする［式 (2.19)で定義］．また領域 Ω(t)は閉曲面 ∂Ω(t)を境界に持つと仮定し，その外向き法線ベ

クトルを n ［面積要素を ndS］とすると

Ftot =

∫
Ω(t)

drρK +

∫
∂Ω(t)

dS←→σ · n

=

∫
Ω(t)

dr{ρK +∇ ·←→σ } (2.8)

と書ける．ただし第 2の等号では Gaussの定理を用いた［本稿次節で補足］．他方で式 (2.6)の f に v［の成

分 vα］を代入すると dp/dt =
∫
Ω(t)

drρDtv であり，これを上式と等置して得られる関係∫
Ω(t)

dr[ρ{∂tv + (v · ∇)v} − {ρK +∇ ·←→σ }] = 0 (2.9)

が任意に選んだ領域 Ω(t)に対して成り立つことを要求すると，運動方程式

［Dtv = ］∂tv + (v · ∇)v = K +
1

ρ
∇ ·←→σ (2.10)

を得る．

次にエネルギーに対する連続の式を求めよう．単位体積に含まれる連続体のエネルギーは，力学的エネル

ギー密度 ρv2/2と内部エネルギー密度 ρϵの和である［ϵは単位質量あたりの内部エネルギーとして定義］．領

域 Ω(t) に含まれるエネルギーの単位時間あたりの増加は，熱流 q の表面 ∂Ω(t) からの流入と，力の仕事率∫
Ω(t)

drρK · v +
∫
∂Ω(t)

dS(←→σ · n) · v によってのみもたらされる．したがって式 (2.10)の導出と同様の手順

を踏めば

ρ
D

Dt

(
1

2
v2 + ϵ

)
=∇ · (←→σ · v − q) + ρK · v

=
∂

∂xα
(σαβvβ − qα) + ρKαvα (2.11)

が得られる［本稿次節で確認］．ここに式 (2.10)を代入すると

ρ
Dϵ

Dt
=←→σ : ∇v −∇ · q (2.12)

を得る［本稿次節で確認］．ただし←→a :
←→
b = aαβbαβ である．
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ここで熱力学第一法則 dϵ = −Pd(1/ρ) + Tdsを思い出そう (T は温度，P は圧力)．［内部エネルギー ϵと

同様，エントロピー sは単位質量あたりの量であり，また連続体の単位質量が占める体積は 1/ρである．］こ

れを用いると式 (2.12)はエントロピー密度 sの変化の式

ρT
Ds

Dt
=σαβvαβ + Pvαα − ∂αqα

=σ′
αβvαβ − ∂αqα (2.13)

に書き直せる［本稿次節で確認］．ここに σ′
αβ := σαβ +Pδαβ は偏差応力［応力 σαβ の圧力−Pδαβ (式 (2.40)

を見よ)からのズレ］であり，また vαβ := ∂αvβ を導入した．

領域 Ωの全エントロピー S :=
∫
Ω
drρsの変化量は，式 (2.6),(2.13)より

d

dt

∫
Ω

drρs =

∫
Ω

drρ
Ds

Dt
=

∫
Ω

dr
σ′
αβvαβ

T
−
∫
Ω

dr∇ ·
( q
T

)
−
∫
Ω

dr
∇T
T 2
· q (2.14)

となる．［最右辺で (∇ · q)/T を 2項に分けたことは次の事情から動機付けられる．すなわち］領域 Ωを充分

大きくとると，遠方で領域外へ出る熱流などは，したがって式 (2.14)右辺第 2項を表面積分に書き換えた項

は無視できる．よって熱力学第二法則は

0 ≤ d

dt

∫
Ω

drρs =

∫
Ω

dr
σ′
αβvαβ

T
+

∫
Ω

dr

(
−∇T
T 2
· q
)

(2.15)

を与える．熱流の有無は状況に応じたものなので，右辺の 2つの項 (の被積分関数)はそれぞれ独立に非負と

ならねばならない．すると T > 0より，条件

σ′
αβvαβ ≥ 0, −q · ∇T ≥ 0 (2.16)

が課される．第 1 式は粘性発熱と呼ばれる項である．またしばしば熱流は温度勾配に比例し，κ を (非負の)

熱伝導率として
q = −κ∇T (2.17)

と表される．このとき式 (2.16)の第 2式は
κ(∇T )2 ≥ 0 (2.18)

となって自動的に満たされる．(議論の順序を逆転させると，式 (2.18)から κ ≥ 0が帰結する．)

2.2節について

■式 (2.3)第 2の等号における dJ(t)/dt = (∇ · v)J(t)について 連続体は空間反転を伴わない連続的な変形

を行うと仮定して，絶対値を外した Jacobi行列式

J(t+∆t) =
∂(r(t+∆t))

∂(r(t))

∂(r(t))

∂(X)

を考える．xµ(t+∆t) = xµ(t) + vµ(t)∆t+O(∆t2)を代入すると

∂(r(t+∆t))

∂(r(t))
= ϵαβγ

∂x1(t+∆t)

∂xα(t)

∂x2(t+∆t)

∂xβ(t)

∂x3(t+∆t)

∂xγ(t)
= 1 + (∇ · v)(t)∆t+O(∆t2)

を得る (ϵαβγ は式 (2.21)の Levi-Civita記号)．ただし (∇ · v)(t) = ∂vα(t)/∂xα(t) においては，粒子の速度

v(t) := v(X, t) =
d

dt
r(X, t)
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を改めて“初期位置”(Lagrange座標) xα(t)の関数 vα({xα(t)}, t)の関数と見て微分をとった．その値はも
ちろん粒子の位置 r = r(t) := r(X, t)で評価した速度場 v(r, t)の発散に一致する．こうして体積の変化率を

与える，よく知られた公式
d

dt
J(X, t) = [(∇ · v)(X, t)] J(X, t)

が導かれる．

質量保存則を用いずとも例えば非圧縮性流体に対して ∇ · v = 0であることが，ここから直接的に言える．

■式 (2.6)の確認 通常の微分に対する Leibniz則は定義式 (2.1)を通じて，Lagrange微分にも引き継がれる

ことが確かめられる：
Dt(ρf) = fDtρ+ ρDtf.

ここで式 (2.5)の代わりに等価的に式 (2.4)の形の連続の式を適用して，上式の右辺第 1項を書き換えると

Dt(ρf) = −ρf∇ · v + ρDtf

が見出される．そこで積 ρf に対して公式 (2.2)を適用すると

d

dt

∫
Ω(t)

drρf =
d

dt

∫
Ω(t)

dr{Dt(ρf) + (ρf)∇ · v} =
∫
Ω(t)

drρDtf : (2.6)

を得る．

■式 (2.8)の面積力について ストレステンソルを式 (2.19)で定義していることから，面積力の第 α成分は∫
∂Ω

dSσαβnβ =

∫
Ω

dr∂βσαβ

である．ここで αを固定して得られるベクトル σα = (σα1, σα2, σα3)に対して，通常の Gaussの発散定理を

適用すれば良い．右辺も後の式 (2.11)のように隣り合う添字で和をとる形で [∇ ·←→σ ]α := ∂βσβα を定義する

ならば，式 (2.8)最右辺を得るには対称性 (2.20):σαβ = σβα を利用する必要がある．

■エネルギーに対する連続の式 (2.11)の導出 エネルギー保存則

d

dt

∫
Ω(t)

drρ

(
1

2
v2 + ϵ

)
= −

∫
∂Ω(t)

dSq · n+

∫
Ω(t)

drρK · v +

∫
∂Ω(t)

dS(←→σ · n) · v

の左辺は公式 (2.6)を用いて書き換えられる．他方で右辺の面積分は Gaussの定理を用いて∫
∂Ω(t)

dSq · n =

∫
Ω(t)

dr∇ · q,∫
∂Ω(t)

dS(←→σ · n) · v =

∫
∂Ω(t)

dSσαβnβvα =

∫
Ω(t)

dr∂β(σαβvα) =

∫
Ω(t)

dr∂α(σαβvβ) =

∫
Ω(t)

dr∇ · (←→σ · v)

と書き換えられる．ただし第 2式の第 3の等号では対称性 (2.20):σαβ = σβα を用いた．すると∫
Ω(t)

drρDt

(
1

2
v2 + ϵ

)
= −

∫
Ω(t)

dr∇ · q +

∫
Ω(t)

drρK · v +

∫
Ω(t)

dr∇ · (←→σ · v)

となって式 (2.11)が得られる．
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■式 (2.12)の導出

D

Dt

(
1

2
v2

)
=

1

2
(∂t + vβ∂β)v

2
α = vα(∂t + vβ∂β)vα = v · Dv

Dt

のように，Leibniz則は Lagrange微分にも引き継がれる．ただし上式第 2辺の v 2
α = vαvα においても αで

和をとる．ここに運動方程式 (2.10)を代入すると

D

Dt

(
1

2
v2

)
= v · Dv

Dt
= v ·

(
K +

1

ρ
∇ ·←→σ

)
となるので，エネルギーの式 (2.11)は

ρ
Dϵ

Dt
= −ρ D

Dt

(
1

2
v2

)
+∇ · (←→σ · v − q) + ρK · v = −v · (∇ ·←→σ ) +∇ · (←→σ · v)−∇ · q

と書き換えられる．さらに最右辺において

−v · (∇ ·←→σ ) +∇ · (←→σ · v) = −vβ(∂ασαβ) + ∂α(σαβvβ) = σαβ(∂αvβ) =:
←→σ : ∇v

と変形すると式 (2.12)を得る．

■エントロピー密度の変化率 (2.13)の導出 第一法則 dϵ = −Pd(1/ρ) + Tdsを連続体の単位質量の粒子に

関する単位時間あたりの変化量と見ると，

ρT
Ds

Dt
= ρ

Dϵ

Dt
+ ρP

D

Dt

(
1

ρ

)
.

ここで右辺の第 1 項に式 (2.12) を代入する．また第 2 項では定義式 (2.1) を通じて合成関数の微分法が

Lagrange微分にも引き継がれることに注意し，次いで連続の式 (2.4)を用いて

D

Dt

(
1

ρ

)
= − 1

ρ2
Dρ

Dt
=

1

ρ
∇ · v

と書き換える．すると

ρT
Ds

Dt
=←→σ : ∇v + P∇ · v −∇ · q = σαβ∂αvβ + Pvαα − ∂αqα : (2.13)

とまとめられる．

2.3　ストレステンソルの性質

ストレステンソル σαβ は応力テンソルとも呼ばれ，β 軸に垂直な法線ベクトル nβ を持つ微小面積 δAに働

く力の第 α成分を
Fα = σαβnβδA (2.19)

で与える．［これは連続体の n側の部分が面積 δAを介して −n側の部分に及ぼす面積力である (式 (2.8)を

見よ)．］

ストレステンソルは
σαβ = σβα (2.20)
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を満たす対称テンソルである．実際，対称性 (2.20)は静止状態でトルクに対する安定性を表す．［連続体が任

意の運動状態にある場合にも，体積力に比べて面積力が支配的となる微小要素に対しては，角運動量とトルク

の関係は応力によるトルクのつり合いに帰着し，対称性 (2.20)が帰結する [1, pp.178–179]．それは以下の導

出と完全には等価でない．］対称性 (2.20)は次のように示すことも可能である．Levi-Civita記号

ϵαβγ =


+1 (α, β, γが［1, 2, 3の］偶置換)

−1 (α, β, γが［1, 2, 3の］奇置換)

0 (それ以外)

(2.21)

を導入して式 (2.6) で f を (r × v)α = ϵαβγxβvγ とおくと，［領域 Ω(t) を占める連続体の角運動量の変化

率は］
d

dt

∫
Ω

dr ρϵαβγxβvγ =

∫
Ω

dr ρϵαβγxβ
Dvγ
Dt

(2.22)

と表される．［ただし rは空間に固定した位置であって，力学変数ではなく単なるパラメータである．］ここで

体積力はないと仮定し，上式 (2.22)を面積力のトルク∫
∂Ω

dSϵαβγxβσγδnδ =

∫
Ω

dr
∂

∂xδ
(ϵαβγxβσγδ) =

∫
Ω

drϵαβγ

(
xβ
∂σγδ
∂xδ

+ σγβ

)
(2.23)

と等置すると， ∫
Ω

drϵαβγxβ

[
ρ
Dvγ
Dt
− ∂σγδ

∂xδ

]
=

∫
Ω

drϵαβγσγβ (2.24)

を得る．ところが運動方程式 (2.10):ρDtvγ = ∂δσγδ より上式 (2.24)左辺はゼロである．［対称性 (2.20)をあ

らかじめ仮定せず導かれる運動方程式はこの形なので循環論法に陥らない．］そこで右辺が任意に選んだ積分

領域 Ωに対して成り立つことを要求すると ϵαβγσγβ = 0，したがって

0 = ϵδζαϵαβγσγβ = (δδβδζγ − δδγδζβ)σγβ = σζδ − σδζ

となり，対称性 (2.20)が帰結する．［σγβ の対称部分は和 ϵαβγσγβ に寄与せず，条件 ϵαβγσγβ = 0は σγβ の

反対称部分が消えることを課す．］

最後に節末の脚注 (教科書 p.22)の全文を引用しておく：

トルクバランスが他の自由度を通して実現する場合はストレステンソルは非対称になってもよい．例としては磁

性流体が挙げられる．また素子に回転自由度がある系を連続体で表現するときも非対称テンソルになる．例えば後

者であれば，マイクロ回転 (micro-rotation) はカップルストレスの発散とストレステンソルの反対称部分が時間

発展に寄与する．

2.4　フック弾性体

粉体に対するストレステンソルの構成方程式［歪 (速度)と応力の関係式］の決定は本稿の主題である．本

章では典型的な線形構成方程式として Hooke弾性体と Newton流体の場合を取り上げる．

歪 (ひずみ)テンソル uαβ と歪速度テンソル vαβ を

uαβ :=
1

2
(∂αuβ + ∂βuα), vαβ :=

1

2
(∂αvβ + ∂βvα) (2.25)

で定義する．ここで uα := x′α − xα は連続体要素の平衡位置 xα からの変位である．［2.2 節で導入した

vαβ := ∂αvβ の対称部分が上式 (2.25)の歪速度 vαβ である．ただし反対称部分は対称テンソル σ′
αβ との縮約

に寄与しないので，式 (2.13)以降においても vαβ を歪速度に読み換えて良い．］
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連続体の変形は 2点 x,x+ δxにおける変位の差

δuα :=δx′α − δxα = (∂βuα)δxβ +
1

2
(∂β∂γuα)δxβδxγ + · · · (2.26)

≃(uαβ +Ωαβ)δxβ (2.27)

に関係付けられる．ただし反対称部分 Ωαβ := (∂βuα − ∂αuβ)/2 は［剛体的な回転をもたらし変形に寄与せ
ず，また対偶なテンソルは］Ωα := ϵαβγ∂βuγ/2と書ける．特に［α ̸= β に対して uαβ = 0となる］等方的歪

の下では，微小体積要素 δV = δx1δx2δx3 は

δV ′ = δx′1δx
′
2δx

′
3 = (1 + u11)(1 + u22)(1 + u33)δx1δx2δx3 ≃ (1 + uαα)δV (2.28)

に移されるため，歪テンソルのトレース

uαα =
δV ′ − δV

δV
(2.29)

は体積歪［膨張率］を与える．

Hooke弾性体はストレスが平衡位置からの変形に比例するモデルであり，構成方程式は

σαβ =

(
∂σαβ
∂uγδ

)
eq

uγδ = Cαβγδuγδ (2.30)

という形をとる．ここで添字 eqは平衡位置での値を意味する．特に等方弾性体では

Cαβγδ = λδαβδγδ + µ(δαγδβδ + δαδδβγ) (2.31)

と書けるので，構成方程式 (2.30)は
σαβ = λuγγδαβ + 2µuαβ (2.32)

となる．ここに λ, µは Lamé (ラメ)の弾性率と呼ばれる．［文献 [1, pp.183–184]には流体の文脈で，等方テ

ンソルの表式 (2.31)をあからさまには経由しない式 (2.32)(ないし式 (2.40))の等価的な導出がある．］

ここで領域 Ωを占める Hooke弾性体を δuα だけ微小変位させることを考えよう．［与えられた点での変位

uα の変分 δuα を，異なる点での変位の差 (2.26)と混同しないように注意する．］応力が常につり合っており

［運動方程式 (2.10)の右辺において］∂βσαβ = 0が成り立つ準静的な変形を仮定すると，このとき［外から表

面に加える］応力のする仕事は∫
∂Ω

dSσαβnβδuα =

∫
Ω

dr∂β(σαβδuα) =

∫
Ω

drσαβδ(∂βuα) =

∫
Ω

drσαβδuαβ (2.33)

と表される．［最後の等号では ∂βuα の反対称部分が対称テンソル σαβ との縮約に寄与しないことに注意し

た．］よって応力がする単位体積あたりの仕事は δW = σαβδuαβ と同定できる．準静的な等温変化では系の

された仕事と自由エネルギー F の変化は等しいので［dF = −SdT − dWした］，

σαβ =
∂δW

∂uαβ
=

∂δF
∂uαβ

(2.34)

が成り立つ［第 1の等号を本稿次節で補足］．したがって

δW = δF =
1

2
Cαβγδuαβuγδ =

λ

2
uααuββ + µuαβuαβ (2.35)
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と書ける［係数 1/2を本稿次節で補足］．ここで［トレースレスであり，したがって式 (2.28–29)の］等方圧

縮と関係ない剪断歪変形を表すテンソル

u′αβ := uαβ −
1

3
δαβuγγ

を導入しよう．これを用いると式 (2.32),(2.35)は

δF =µu′αβu
′
αβ +

K

2
uααuββ , (2.36)

σαβ =Kuγγδαβ + 2µu′αβ (2.37)

と書き直され，ここにK := λ+ (2/3)µは体積弾性率と呼ばれる［その意味は式 (2.37)に含まれている］．変

形がない状態が最安定なので，変形に伴う自由エネルギーの変化 (2.36)は δF ≥ 0である．これが (体積変化

のない［uαα = 0］)剪断歪と (剪断のない［u′αβ = 0］)等方圧縮歪の各々に対して成り立たねばならないの

で，条件
K > 0, µ > 0 (2.38)

が課せられる．

2.4節について

■体積歪 (2.29)について 式 (2.3)の箇所で補足も見よ．あるいは uαα = ∂αuα の空間積分∫
V

∇ · udV =

∫
∂V

u · dS

の右辺は弾性体の体積変化となっていることが見て取れる．

■自由エネルギー変化 δF の導出 (2.33–36)について 主に弾性率 µ,K > 0:(2.38)を導くための準備である．

これは 2.2節末尾でエントロピー生成 dS/dt ≥ 0から熱伝導率 κ ≥ 0を導いた議論と似ている．一連の結果

を以下にまとめる：

• エントロピー生成 dS/dt ≥ 0

→ 式 (2.16) →

{
熱伝導率 κ ≥ 0 (式 (2.18)の箇所)

粘性率 η, χ0 > 0 (式 (2.42)の箇所)

• 自由エネルギー変化 δF ≥ 0　→　弾性率 µ,K > 0:(2.38)

これらの正値性が単に経験的事実として仮定されるのではなく，理論内部で要請されるのは興味深い．

なお 3.2節で弾性エネルギーを論じる際にも公式 (2.33)を用いる．

■式 (2.33)について Landau=Lifshitz『弾性理論』§ 3の記述が概念的に明快である．変位ベクトル uαが微

小量 δuα だけ変化する変形において，内部の応力がする仕事を調べよう．単位体積あたりの応力 Fα = ∂βσαβ

のする仕事は δR = (∂βσαβ)δuα であり，これを積分すると∫
δRdV =

∮
σαβδuαdSβ −

∫
σαβ∂βδuαdV.
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空間に固定した積分領域を充分大きくとり，その表面で σαβ = 0とすると，第 1の面積積分は消える．第 2

の積分は，テンソル σαβ の対称性を利用すると，∫
δRdV = −1

2

∫
σαβ(∂βδuα + ∂αδuβ)dV = −1

2

∫
σαβδuαβdV

と書き換えられる．こうして弾性体の単位体積がした仕事

δR = −σαβδuαβ

が見出される (応力に逆らう力にされた仕事 δW はその逆符号)．

■式 (2.34)の第 1の等号について 本来 uαβ は定義により対称テンソルであるものの，ここでは uαβ と uβα

を独立変数と見なして微分をとらねばならない．実際このとき初めて式 (2.34) 第 1 の等号が成り立つ．式

(2.34)から変分記号 δ を除き，単に

δW = δF = σαβδuαβ , ∴ σαβ =
∂F
∂uαβ

と書いても良い (F の平衡値は微分に寄与しないため)．

また単位体積あたりではなく領域全体での仕事 (2.33)の仕事を改めて δW と書けば，応力は式 (2.34)の代

わりに汎関数微分

σαβ =
δW

δuαβ

で表される．この場合にも uαβ と uβα を独立に扱わねばならないことに変わりはない．

■式 (2.35)の係数 1/2について ここでは式 (2.33)とは対照的に，微分の際に σαβ の uαβ 依存性を考慮する

ため，式 (2.34):σαβ = ∂δW
∂uαβ

を再現するには δW = σαβuαβ に機械的に構成方程式 (2.30):σαβ = Cαβγδuγδ

を代入するだけでは不充分であり，式 (2.35)のように係数 1/2を要する．

2.5　ニュートン流体

［節タイトルにある Newton 流体の定義に関しては，1.1 節 (教科書 p.3) を本節の最終段落と併せて参照

せよ．］

流体のストレスは歪テンソル uαβ の代わりに歪速度テンソル vαβ に依存すると考えられる．そこで構成方

程式を vαβ に関して線形な形

σαβ = (σαβ)eq +

(
∂σαβ
∂vγδ

)
0

vγδ = C ′
αβ + C ′

αβγδvγδ (2.39)

におこう．等方流体を仮定すると，

C ′
αβ =− Pδαβ , ［常に働く圧力］

C ′
αβγδ =λ0δαβδγδ + η(δαγδβδ + δαδδβγ), ［等方テンソル (2.31)の形］

∴ σαβ =− Pδαβ + λ0vγγδαβ + 2ηvαβ ［式 (2.32)と比較される］

=(−P + χ0vγγ)δαβ + 2ηv′αβ (2.40)

と書ける．最右辺では［弾性体の式 (2.37)と同様に再び］トレースレス部分

v′αβ := vαβ −
1

3
vγγδαβ
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を導入し，体積粘性率 χ0 := λ0 + 2η/3を定義した．他方で η は通常，粘性率と呼ばれる．このとき

σαα = 3(−P + χ0vαα), またα ̸= βに対して σαβ = 2ηvαβ

が満たされる．

しばしば非圧縮整流体を仮定して［∇ · v =］vαα = 0とおくことが有用である．さらに粘性率の空間依存

性を無視でき，また外力［体積力］もない場合には，［運動方程式 (2.10)は］(狭義の) Navier-Stokes方程式

Dv

Dt
= −1

ρ
∇P +

η

ρ
∇2v (2.41)

に帰着する［2η∂βvαβ = η∂β(∂αvβ + ∂βvα) = η∇2vα による］．粘性率は比 η/ρ (動的粘性率と呼ぶ)の形で

のみ現れる．

式 (2.16)で定義した粘性発熱は Newton流体に対しては

(0 ≤)Φ := σ′
αβvαβ =(χ0vγγδαβ + 2ηv′αβ)

(
v′αβ +

1

3
vδδδαβ

)
=2ηv′αβv

′
αβ + χ0vγγvδδ (2.42)

となるので，η ≥ 0, χ0 ≥ 0が帰結する．

最後に，本章では歪または剪断率が小さい等方連続体に対して，応力が歪 (速度)に線形な場合を考えた．他

方で本稿の主題である非線形レオロジーでは，線形連続体で導入した弾性率 λ, µ,K または粘性率 η, χ0 が歪

や剪断率に依存し得る量になる結果，構成方程式が非線形になるという見方を採用する．［代わりに構成方程

式に歪 (速度)の高次の項を付け加えて同じ構成方程式が得られるとしても，物理的解釈の違いは必ずしも数

学的等価性に還元し切れないと考えられる．］
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第 3章　レオロジーの一般論

3.1　 4つの弾性率

3.1.1　ヤング率

図 7のように断面積 A，長さ Lの棒を，一軸方向［ここでは長さ方向］に力 Fn を加えて δLだけ伸ばすこ

とを考える．このとき圧力 Pn := Fn/Aと伸び歪［伸び率］εn := δL/L ［は，εn が小さいときには比例関係

にあると期待され*4，これら］の比

Y :=
Pn
εn

=
Fn/A

δL/L
(3.1)

を Young率と呼ぶ．弾性体を δL ≥ 0だけ伸ばすには力 Fn ≥ 0が必要なので Y ≥ 0である．またしばしば

コンプライアンスと呼ばれる量

J :=
1

Y
(3.2)

が導入される (本稿では用いない)．

前章の Hooke弾性体に対しては

Y =
µ(3λ+ 2µ)

λ+ µ
(3.3)

が成り立つ［本稿次項で確認］．

3.1.1項について

■Hooke弾性体の Young率 (3.3)の確認 歪テンソル uαβ の定義式 (2.25)より，とりわけ uγγ = ∂γuγ とな

ることに注意すると，Hooke弾性体の構成方程式 (2.32): σαβ = λuγγδαβ + 2µuαβ は具体的には

σ11 = (λ+ 2µ)∂1u1 + λ∂2u2 + λ∂3u3, σ12 = µ(∂1u2 + ∂2u1), etc.

を与える．

ここで図 7のように棒を長さ方向に伸ばす場合を考えよう．長さ方向に沿って x軸をとると，このとき伸

び率は εn = δL/L = ∂1u1 であり，ゼロでない応力成分は Pn = σ11 のみである．また変位 uα は y, z に依存

図 7 長さ L の棒状の弾性体の断面積 A

に力 Fn をかけ，長さを δL 伸ばした様子

［左端は固定］

図 8 高さH の弾性体の面積 Aの上面に力 Ft をか

け，上面を力の方向に l だけ動かした様子［底面は

固定］

*4 添字 nは normalの頭文字，また次項の添字 tは tangentialの頭文字と推察される．
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してもよく，u22 = ∂2u2, u33 = ∂3u3 は一般にノンゼロであることに注意する．実際，後の 3.1.4項ではこれ

らを用いて Poisson比 (3.9–10)が定義される．さらに軸対称性から ∂2u2 = ∂3u3 が期待される*5．すると

0 = σ22 =λ∂1u1 + (λ+ 2µ)∂2u2 + λ∂3u3

=λ∂1u1 + 2(λ+ µ)∂2u2

より Poisson比 (3.9)は

ν =
−∂2u2
∂1u1

=
λ

2(λ+ µ)

(
<

1

2

)
: (3.10)

と表される*6．これを用いて ∂2u2 を消去すると

Pn = σ11 = (λ+ 2µ)∂1u1 + 2λ∂2u2 =
µ(3λ+ 2µ)

λ+ µ
∂1u1

となるので，εn = ∂1u1 の係数として Young率を式 (3.3)のように同定できる [2, pp.106–107]．

これらの式 (3.3),(3.10)では実験から直接的に求まる弾性率 Y, ν が，理論的により基本的な弾性率 (Lamé

定数) λ, µで表されている．

3.1.2　歪剛性率

図 8のように弾性体の面積 Aに力 Ft を，したがって剪断応力 σt = Ft/Aを加えて剪断歪 γ := l/H をもた

らす場合を考える．剪断歪 γ がある程度小さいうちは σt は γ に比例すると考えられ，そこでその比例係数と

して歪剛性率 (shear modulus)

G :=
σt
γ

(3.4)

が定義される．一般に G > 0である．また Gは線形弾性体の Lamé係数の 1つ µに対応している［本稿次項

で補足］．線形な比例関係が成り立たない場合にも式 (3.4)を Gの定義として採用すると，Gは歪 γ に依存し

ても良い［2.5節の最終段落も見よ］．

3.1.2項について

■剛性率 G と Lamé 定数 µ の関係 図 9 のように歪を xy 面内にとると，ゼロでない微分係数 ∂βuα は

∂2u1 = γ のみである．(これは図 9に示したずれの角度 θ に一致している．) したがって歪テンソルのゼロで

ない成分は
u12 = u21 = γ/2 = θ/2

である*7．このとき歪と応力の関係式 (2.32)より，ゼロでない応力成分は

σt = σ12 = 2µu12 = µγ

であり，ここから剛性率は G = µと同定される [2, pp.108–109]．

*5 実際この関係は

0 = σ22 = λ∂1u1 + (λ+ 2µ)∂2u2 + λ∂3u3, 0 = σ33 = λ∂1u1 + λ∂2u2 + (λ+ 2µ)∂3u3

を辺々引くと得られる．
*6 λ > 0を仮定しない ν < 1/2の説明が式 (3.12)の箇所にある．
*7 ただし歪テンソル u12, u21 による変位の場 uα = uαβxβ は図 10のような純粋なずれ歪であり [1, pp.32–33]，図 9のようなず
れを実現するには，2.4節の回転の寄与 Ω12 = −Ω21 = ∂1u2/2 = −θ/2を要する (教科書 3.8節)．
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図 9 剪断歪の図 8への座標系の導入
図 10 歪テンソル u12(= u21)に

よる変形

3.1.3　体積剛性率

［前項では体積変化を伴わない歪を考えた．次に］物体に加える圧力 P を P + δP へと僅かに変化させたと

き，体積が V から V + δV へと変化した場合を考える．体積歪を εV := −δV/V で定義すると［圧縮 δV < 0

に対して εV > 0］，これは δP/P に［あるいは δP に*8］比例すると考えられ，そこで等温圧縮条件下では正

の比例係数として，体積剛性率 (bulk modulus)ないし体積弾性率

K := − δP

δV/V
= −V

(
∂P

∂V

)
T

(3.5)

を導入できる．逆数

βc :=
1

K
= − 1

V

(
∂V

∂P

)
T

(3.6)

を圧縮率 (compressibility)と呼ぶ．［単位の圧力増大から得られる体積歪 −δV/V
δP である．］

ここで導入した体積弾性率 K は，式 (2.36–38) で導入した K と等価であることを見ておこう．［σαβ =

−δP · δαβ とすれば］構成方程式 (2.37)の対角和は

σαα = −3δP = 3Kuαα, ∴ uαα = −δP
K

(3.8′)

を与える．［ここで uαα = ∂αuα は式 (2.29)で見たように体積変化率 δV/V である．］すると上式 (3.5):K =
δP

−δV/V が再現されるので，式 (2.36–36)のK は体積弾性率に一致する．

3.1.4　ポアソン比

3.1.1項の図 7のように，棒を引っ張ると棒は横方向［棒の軸に垂直な方向］にも変形する．そこで Poisson

比を横方向に収縮歪［−γ との比］
ν := − γ

εn
(3.9)

で定義する．

*8 理想気体の等温変化では PV = const.より δP/P = −δV/V が成り立つ (3.2節も見よ)．
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図 11 負の Poisson比を示す弾性体の模式図

Hooke弾性体では

ν = −u22
u11

=
λ

2(λ+ µ)
=

3χ− 2µ

2(3χ+ µ)
(3.10)

が成り立つ［第 3辺までを式 (3.3)とともに確認済み］．ただし最右辺では体積弾性率 K := λ+ (2/3)µを改

めて χと書いた．［Young率 (3.3)と Poisson比 (3.10)は理論においてより基本的な Lamé定数で表されて

いる．これを逆に解いて］Lamé定数 λ, µと体積弾性率 χを Y と γ で表すと

λ =
νY

(1 + ν)(1− 2ν)
, µ =

Y

2(1 + ν)
, χ =

Y

3(1− 2ν)
(3.11)

となる［本稿次項で確認］．

ところで式 (2.38)で熱力学の観点から示したように，χ(= K) > 0, µ > 0である．これらを上式 (3.11)に

課すと，Poisson比のとり得る値への制限

− 1 < ν <
1

2
(3.12)

が見出される．上式 (3.12)によれば Poisson比が負の値をとることは禁じられていない．確かに Poisson比

が負ということは，弾性体を引き伸ばすと横方向にも膨らむことを意味し，一見すると実現しそうにない．し

かしながら近年，Poisson比が負の弾性体を現に人工的に製作可能であることが，多数の例で明らかになって

いる．例えば図 11のような弾性体を左右に引っ張ると，畳み込まれていた部分が上下方向に広がる*9．

2.5節末尾で述べたように，本稿ではここで導入した弾性率は歪に依存し得るという立場をとる．

3.1.4項について

■λ, µ, χを Y, γ で表した式 (3.11)の確認 例えば

式 (3.3) : Y =
1

λ

(µ/λ){3 + 2(µ/λ)}
1 + (µ/λ)

, 式 (3.10) : ν =
1

2{1 + (µ/λ)}

と書いておき，第 2式を比 µ/λについて解くと

1 +
µ

λ
=

1

2ν
,

µ

λ
=

1− 2ν

2ν

*9 R. Lakes, Science 235, 1038 (1987).
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となる．これを冒頭の第 1式に代入すると

Y =
1

λ
· 2ν · 1− 2ν

2ν
·
(
3 +

1− 2ν

ν

)
=

1

λ

(1 + ν)(1− 2ν)

ν

となるので，式 (3.11)の第 1式を得る．すると

µ = λ · µ
λ
=

νY

(1 + ν)(1− 2ν)
· 1− 2ν

2ν
=

Y

2(1 + ν)

のように，式 (3.11)の第 2式が得られる．最後に式 (3.11)のはじめの 2式を体積弾性率 χ = λ + (2/3)µに

代入すると，式 (3.11)の第 3式を得る．

■Poisson 比 ν に関する考察 図 7 の円筒状の弾性体 (半径を r とおく) について，体積 V = πr2L, dV =

πr(rdL+ 2Ldr)より

ν =
−dr/r
dL/L

=
1

2

(
1− dV

πr2dL

)
.

よって式 (3.12):ν < 1/2は dV > 0を意味する．

同じ伸び dL/Lに対して太さ方向の縮み −dr/r は，“伸びやすい”材質ほど大きく，“固い”材質ほど太さ
の方向にあまり縮まない*10．このため νゴム > νガラス である [2, p.107]．

直観的にも式の上でも理解できるように，同じ伸び dL/Lに対して太さの縮み −dr/r が小さい材質ほど，
体積の増大 dV は大きく変化する．したがって“固い”材質の方が同じ伸びに対する体積変化は大きいことに

なる (強引な変形と解釈できる)．

3.2　熱力学的関係式とエントロピー弾性

歪 εと単位体積あたりの弾性エネルギー w の関係を考えよう．圧力による場合は

w =

∫ ε

0

Pdε′ (3.13)

である．Hooke弾性体では P = Kεが成り立つので，

w =
1

2
Kε2 ⇔ K =

∂2w

∂ε2
(3.14)

が導かれる．剪断歪の場合も同様に

w =
1

2
Gγ2 ⇔ G =

∂2w

∂γ2
(3.15)

が成り立つ．［以上，本稿次節で補足する．］

なお剛性率 K は等温過程と断熱過程とでは大きく異なる．例えば 1モルの理想気体では，等温過程に対し

定義式 (3.5):Kis := −V
(
∂P
∂V

)
T
より

P =
RT

V
, ∴

(
∂P

∂V

)
T

= −P
V
, ∴ Kis = P

*10 これは言い換えると，同じ太さ方向の縮み −dr/r に対し“伸びやすい”材質ほど，長さ方向の伸び dl/l は小さいということであ
る (まだ伸びる余地がある)．逆と勘違いしないよう，要注意である．
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となる (Rは気体定数)．他方で断熱過程では，γ を比熱比とすると (剪断歪 γ との混同に注意)

PV γ = const, ∴ V γdP +γPV γ−1dV = 0, ∴
(
∂P

∂V

)
S

= −γ P
V
, ∴ Kad := −V

(
∂P

∂V

)
S

= γP

となり，Kad はKis の γ 倍も異なる (単原子分子で γ = 5/3，2原子分子で γ = 7/5)．

以下では等温過程を考え，この場合にもエントロピー弾性［したがってエントロピー変化の弾性率 K への

寄与］があることを説明する．単位体積あたりの自由エネルギー，内部エネルギー，エントロピー F , ϵ, sの間
には熱力学的関係 dF = dϵ− Tdsが成り立つ．［自由エネルギーの定義 F = ϵ− Tsを温度一定の下で微分し
た*11．］これと式 (2.34)を圧力に対して書き換えた P = (∂F/∂ε)T ［本稿次節の式 (1):δF = Pδε］より，

P = a+ bT, a :=

(
∂ϵ

∂ε

)
T

, b := −
(
∂s

∂ε

)
T

(3.16)

を得る．さらに線形関係 P = Kεは K = (∂P/∂ε)T と書き換えられる．そこで非線形領域でも K をこの式

で定義すると

K = a′ + b′T, a′ :=

(
∂a

∂ε

)
T

, b′ := −
(
∂b

∂ε

)
T

(3.17)

となる．b′ はエントロピー変化に起因しているので，エントロピー弾性を表す．

3.2節について

■弾性エネルギー (3.13–15)について ばねの弾性力 F (x) = −kxによる弾性エネルギーの導出

U =

∫ x

0

(−F (x′))dx′ = 1

2
kx2

と同様に，歪に線形な応力に逆らって，歪を与えられた値まで増加させる仕事として弾性エネルギーを求め

よう．

まず 3.1.3項で見た圧力 P による体積歪 εを考える．圧力 P に逆らって弾性体を δV だけ体積変化させる

仕事は −PδV であり，単位体積あたりでは δw = −PδV/V = +Pδεと書ける．あるいは式 (2.33)の結果に

基づき，圧力 σαβ = −Pδαβ に逆らって歪

uαβ = −1

3
εδαβ

(
∵ 式 (2.29) : uαα = ∂αuα = −ε

)
の微小変化 δεをもたらす仕事を

δw = σαβδuαβ = Pδε (1)

と求めることもできる．歪を積分変数 ε′ に置き換え，これが εに達するまでに応力 P = Kε′ も変化すること

に注意して δwを積分すると

w =

∫ ε

0

Pdε′ =
1

2
Kε2

を得る．

次に図 8で見た剪断歪を考えよう．歪 δγ = δl/H をもたらす仕事は単位体積あたり

δw =
Ftδl

AH
= σtδγ

*11 なお 2.2節では ϵ, sを流体系に対して単位“質量”あたりの量と定義した．

28



図 12 単純剪断流の模式図．y 座標に比例した x軸方向の流れが生じている．

である．あるいは

∂2u1 = γ, ∂1u2 = 0, ∴ u12 = u21 =
1

2
γ, σ12 = σt = Gγ(= σ21)

から
δw = σαβδuαβ = σtδγ = Gγδγ

としても良い．これを積分して

w =

∫ γ

0

σtdγ
′ =

1

2
Gγ2

を得る．

実際，教科書 3.6節 p.41では応力仕事 (3.49)を「応力仕事率 (粘性発熱)の積分」と説明している．

3.3　粘性

図 12 のような単純剪断流を考えると，Newton 流体では剪断ストレス σt が速度勾配 γ̇ = ∂vx/∂y に比例

し，粘性率は
η =

σt
γ̇

(3.18)

を満たす．［実際，式 (2.40)は σt = σ12 = 2ηv12 = ηγ̇ を与える．］非 Newton流体に対しても粘性率を上式

(3.18)で定義すると，η は一般に γ̇ に依存し得る．

また水飴やアスファルトのような非 Newton流体に荷重を加えると，(弾性だけでなく)流れに伴う粘性も

生じる．図 7のような荷重による伸張に対して荷重方向の圧力 Pn と ε̇n := δL̇/Lを定義すると (ドットは時

間微分［δL̇ = (d/dt)δL］)，比例関係
Pn = λε̇n (3.19)

が成り立つ．この λを垂直粘性率 (normal viscosity)と呼ぶ［Young率 (3.3)の対応物］．このような粘性が

現れる流体は一般に非 Newton流体であって，しばしば圧力は等方的でない．［そうであるならば上式 (3.19)

を式 (2.40)から導く試みはナンセンスである．］

さらに前章の体積粘性率 χ0 は，圧力の微小変化 P → P + δP とそれに伴う体積歪速度 ε̇ := −δV̇/V の比
例係数に現れる：

δP = χ0ε̇V = −χ0
δV̇

V
. (3.20)
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［実際，体積変化 vαα = −ε̇V , v′αβ = 0 に対して式 (2.40) は −δP · δαβ = σαβ − (−P )δαβ = −χ0ε̇V を与

える．］

前章［の式 (2.16),(2.42)］で導入した粘性発熱 Φ は［もとの式 (2.13) より系に流入する熱であり］，定常

状態ではエネルギー損失［むしろ (内部の)応力のした仕事 (3.15) (ただし G → η, γ → γ̇)］とバランスする

ので，

Φ =
1

2
ηγ̇2 (3.21)

となることを意識しておきたい．

3.4　塑性流動

粉体のように一定の応力以下では弾性体として振舞い，それを越すと流れる流動形態を塑性流動 (plastic

flow)と呼ぶ．塑性流動の最も簡単なモデルとして Bingham (ビンガム)流体が知られている．その構成方程

式は σY を降伏応力として

γ̇ =

0 (σ < σYのとき)
1

ηB
(σ − σY) (σ > σYのとき)

(3.22)

で与えられ，これは σY = 0のとき式 (3.18)に帰着する．

ここで Bingham 流体に圧力をかけて半径 R の円筒内で流すことを考えよう．円筒の軸［z 軸に選ぶ］に

沿って L 進んだときの圧力降下を δP とする．［圧力勾配 dp/dz = −δP/L は一定であり，したがって流れ
が z 軸方向に並進対称性を持つ場合を考える．］軸から距離 rの円筒面にかかる剪断力は 2πrLσrz(r)である．

［本稿では引き続き σrz を r が大きい側が小さい側に及ぼす応力と定義し，節末までの σrz 等の符号を一貫し

て修正する．定常流を仮定すると，幅 δr の円環を底面とする柱の］力のつり合いは

(2πL)[(r + δr)σrz(r + δr)− rσrz(r)] + 2πrδrδP =0, (3.23)

∴ d

dr
(rσrz(r)) =−

δP

L
r (3.24)

と書ける．r = 0で σrz(0)が有限であることを要求すると，ここから

σrz(r) = −
δP

2L
r (3.25)

が得られる［発散する項 ∼ 1/r をもたらす積分定数をゼロとおいた］．このとき結果的に σrz(0) = 0 が得

られるものの，これは式 (3.24) の境界条件ではないことに注意する．［またこのとき円柱の力のつり合い

2πrLσrz(r) + πr2δP = 0も成り立つ．ここまでは Bingham流体の仮定を用いていない．］

さて，剪断応力 (3.25)［の絶対値］が σY に一致する半径

rY =
2LσY
δP

(3.26)

の内部 r ≤ rY では |σrz| ≤ σY なので，速度勾配［の絶対値］が γ̇ = |dvz/dr| = 0の一様な流れになってい

る［固体のように振舞う］．この領域はプラグと呼ばれる．他方で r ≥ rY では［速度勾配 dvz/drは剪断応力

σrz を同じく負と考え (図 13参照)，式 (3.22)で絶対値を σ = −σrz, γ̇ = −dvz/dr とおいた関係］

− σrz = σY − ηB
dvz
dr

= −δP
2L

r, ∴ dvz
dr

= − 1

ηB

(
δP

2L
r − σY

)
(3.27)
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図 13 Bingham流体の速度プロファイル．rY/R = 1/2として描画した．［ṽ = ηBvz/σYR, r̃ = r/Rと

無次元化すると，式 (3.28)はこのとき ṽ = r̃(1− r̃)となる．］

が満たされている．円筒の壁面での境界条件を vz(r = R) = 0とすると，rR ≤ r ≤ Rでの速度場は

vz(r) =−
1

ηB

(
δP

4L
r2 − σYr

)
+

1

ηB

(
δP

4L
R2 − σYR

)
=
δP ·R2

4ηBL

[
1−

( r
R

)2]
− σYR

ηB

(
1− r

R

)
=
σYR

ηB

[
R

2rY

{
1−

( r
R

)2}
−
(
1− r

R

)]
(3.28)

となる．速度場の連続性からプラグ r ≤ rY の速度は

vz(r) = vz(rY) =
σYR

2

ηBrY

[
1−

(rY
R

)2
− 2rY

R

(
1− rY

R

)]
=
δP ·R2

4ηBL

(
1− rY

R

)2
(3.29)

と求まる．こうして速度場は図 13のようになる．［σrz の符号と連動して，教科書では速度場 (3.28–29)が逆

符号 vz ≤ 0となっている．しかし +z 向きの圧力勾配をかけたにも関わらず流体が逆向き vz ≤ 0に流れるの

は不自然である．Newton流体に対しては σY = 0, ∴ rY = 0より Poiseuille流 [1, pp.190–191]に帰着する．］

3.5　粘弾性モデル

レオロジー研究では粘性と弾性の両方を兼ね備えたレオロジーにも関心が持たれる．以下ではその代表的な

モデルを紹介する．

3.5.1　マクスウェルモデル

式 (3.4)の時間微分をとると応力変化の形 σ̇ = Gγ̇ を得る．これに緩和時間 τM での応力の緩和を記述する

項を加えた現象論的な方程式

σ̇t = Gγ̇ − 1

τM
σt (3.30)

を考えよう．これをMaxwellモデルという．時間変化しない一定の歪 γ = γ0 を加えたときには［右辺第 1項

が落ち］，対応する初期値を σt = Gγ0 とすると，応力は

σt = Gγ0e
−t/τM (3.31)
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図 14 Maxwellモデルの模式図 図 15 Kelvin-Voigtモデルの模式図

に従ってゼロへと緩和する．［もちろん時間の原点の選び方に対応して初期値には任意性がある．］他方で応力

σt = σ0 が一定の場合には，上式 (3.30)は［式 (3.18)の形］

σ0 = ηγ̇, η := GτM (3.32)

となる．

Maxwellモデルは変位［歪速度 γ̇ = σ̇t

G + σt

η ］が弾性変位と粘性変位の和となっているので，しばしば図 14

のようなバネとダッシュポットを直列に繋いだ模式図で表される．［共通の応力による各々の歪速度の和が実

際の歪速度を与える．］

3.5.2　ケルビン・フォークトモデル

ストレスを弾性的な寄与と粘性的な寄与の和

σt = Gγ + ηγ̇ (3.33)

で表したモデルは Kelvin-Voigt (ケルビン・フォークト)モデルと呼ばれる．特に応力 σt = σ0 が一定の場合

には

γ̇ = −G
η
γ +

σ0
η

= − 1

τK
(γ − γ∞), τK :=

η

G
, γ∞ :=

σ0
G
. (3.34)

これを例えば初期歪 γ(0) = 0の下で解くと

γ(t) = γ∞

(
1− e−t/τK

)
(3.35)

となり，歪 γ の緩和時間 τK での γ∞ への漸近的な移行を記述できる．［γ∞ は式 (3.4) に対応する歪の値で

ある．］

なお Kelvin-Voigtモデルはしばしば図 15のような，バネとダッシュポットを並列に繋いだ模式図で表され

る．［共通の歪に対応する各々の応力の和が実際の応力を与える．］

3.6　応力歪曲線

振動的な歪として，例えば剪断 r(X, t) = X + γ(t)Y eX を考え，振動剪断歪を

γ(t) = γ0 sin(ωt) (3.36)

で与える［図 16参照］．ただしX := (X,Y, Z)であり，また eX は歪のかかっていない初期状態でのX 方向

の単位ベクトルである．このとき歪速度ないし速度勾配は

γ̇ = γ0ω cos(ωt) = γ0ωRe(e
iωt) (3.37)
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図 16 2.2 節で導入した初期位置X でラベルされる粒子の変位 u(t) = r(t) −X = γ(t)Y eX の，ある

瞬間における分布．粒子の y 座標 Y は常に一定であり，∂ux(t)/∂y = γ(t)は歪に他ならない．

となる (Reは実部)．

時間に依存した外部変数 γ̇(t)による応答を畳み込み積分の形

σxy(t) =

∫ t

−∞
dt′G(t− t′)γ̇(t′) (3.38)

に書こう．［歪 γ の代わりに γ̇ を入力変数に採ったため，上式 (3.38)で定義される Green関数 G(t)は剛性率

Gの次元を持つ*12．］式 (3.37)を代入すると

σxy(t) = γ0ωRe

[∫ t

−∞
dt′G(t− t′)eiωt

′
]
= γ0ωRe

[
eiωt

∫ ∞

0

dτ G(τ)e−iωτ
]

(τ ≡ t− t′)

と書き換えられる．ここで

σxy(t) = γ0ωRe

[
G∗(ω)

iω
eiωt

]
(3.39)

と書いて複素弾性率 G∗(ω)を定義する．2式を比較すると

G∗(ω) = iω

∫ ∞

0

dt e−iωtG(t) (3.40)

と同定できる．［これは結果的には係数 iω の違いを除き Green関数の Fourier変換となっており，Green関

数の引数 t < 0 は積分範囲から除ける (式 (3.38) と同様)．］複素弾性率 G∗(ω) = G′(ω) + iG′′(ω) の実部と

虚部

G′(ω) =ω

∫ ∞

0

dt sin(ωt)G(t), (3.41)

G′′(ω) =ω

∫ ∞

0

dt cos(ωt)G(t) (3.42)

*12 実際，教科書 p.39，l.5には「剛性率 G(t)」とある．同様に以下の式 (3.39)は複素表示の歪 γ∗(t) = γ0ωeiωt/iω を導入すると
σxy(t) = Re[G∗γ∗(t)] と等価なので，複素弾性率 G∗(ω) はその名の通り剛性率 G の対応物と理解できる．式 (3.45) の箇所も
見よ．
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はそれぞれ貯蓄弾性率 (storage modulud)，損失弾性率 (loss modulus)と呼ばれる［名前の由来は式 (3.44–45)

の箇所を参照］．

ここで γ0ω を一定に保ったまま ω → 0の極限をとると，歪速度 (3.37)は一定値 γ̇ = γ0ω に移行するため，

単純剪断の関係 σxy ≈ ηeffγ0ω が成り立つはずである．実際，同じ極限で式 (3.39)は σxy → γ0G
′′(ω)となる

ため，

ηeff =
G′′(ω)

ω
=

∫ ∞

0

dtG(t) (3.43)

と同定される．そこで有限の ωにおいても，上式［第 2辺］で粘性率 ηeff を定義することが理に適っていると

期待される．実際，式 (3.39)で実部 G′(ω) = 0とおくと［式 (3.46)で G′′(ω)の項に着目することに相当］，

有限の ω での粘性的応答

σxy(ω) =
G′′(ω)

ω
γ̇(t) (3.44)

を得る．［教科書では有限の ω での ηeff を式 (3.43)の最右辺で定義しているものの，上式 (3.44)のように粘

性率に相当するのは式 (3.43)第 2辺である．また式 (3.44)さえ提示すれば ω → 0の議論は省略可能である

ものの，式 (3.43)は教育的である．］

他方，式 (3.39)で虚部 G′′(ω) = 0とおくと［式 (3.46)で G′(ω)の項に着目することに相当］，

σxy(t) = G′(ω)γ0 sin(ωt) = G′(ω)γ(t) (3.45)

となる．ここから G′(ω)は剛性率に直結していることが見て取れる．

式 (3.39)は一般には［弾性項と粘性項の和］

σxy(t) =γ0{G′(ω) sin(ωt) +G′′(ω) cos(ωt)} (3.46)

=G′(ω)γ(t) +
G′′(ω)

ω
γ̇(t)

となっている．上式 (3.46)に sin(ωt)または cos(ωt)を掛けて θ = ωtの区間 [0, 2π]で積分すると，応力から

貯蓄弾性率と損失弾性率を求める有用な公式

G′(ω) =
1

πγ0

∫ 2π

0

dθ σxy(θ) sin θ, (3.47)

G′′(ω) =
1

πγ0

∫ 2π

0

dθ σxy(θ) cos θ, (3.48)

が見出される［σxy(t) = σxy(θ/ω)→ σxy(θ)と書き改めた］．

歪と応力の関係を σxy-γ グラフに描くと，G′′(ω) = 0の場合には Hooke弾性体の式 (3.45)が成り立つので

図 17のような直線となり，G′(ω) = 0の場合 (3.44)には歪と応力が位相差 π/2を保ちながら振動するため，

図 18のように軸が座標軸に一致する楕円となる．一般の粘弾性に対しては楕円

σxy(t) = γ0
√
G′(ω)2 +G′′(ω)2 sin(ωt+ δ), γ(t) = γ0 sin(ωt), tan δ =

G′′(ω)

G′(ω)

が得られる．

ここで単位体積あたりの 1周期の応力仕事

W =

∮
σxy(t)dγ(t) (3.49)
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図 17 Hooke弾性体の応力歪曲線 図 18 粘性体の応力歪曲線

図 19 弾塑性体の応力歪曲線．矢印は操作の向きを表す．

を考えよう［式 (3.13–15)の箇所を見よ］．これは応力歪曲線が 1周期で囲む面積となっている．純粋に弾性

的な応答では，粘性がないことから期待されるように，W = 0となることが図 17から見て取れる．

粘性がなくとも塑性があればW ̸= 0となり得る．実際，例えば降伏歪 γY と降伏応力 σY = GγY/2を導入

して，図 19のサイクル

σxy =


Gγ − σY (γ : 0→ γY, 弾性的にγを増加)

σY (γ : γY → 0, 塑性的にγを減少)

σY −Gγ (γ : 0→ −γY, 弾性的にγを減少)

−σY (γ : −γY → 0, 塑性的にγを増加)

(3.50)

で定義される弾塑性モデルを考えると，応力歪曲線は有限の面積を囲むのでW ̸= 0である．式 (3.50)のよう

な弾塑性モデルでは，式 (3.48)で定義される G′′(ω)はゼロでない値を持つものの，それはもはや粘性を意味

しない．

式 (3.38)の G(t)と式 (3.39)の G∗(ω)は本来，γ0 が非常に小さく，ω に関する高調波も無視できる線形応

答領域で定義される．しかし非線形領域においても G′(ω), G′′(ω)を用いて，その γ0 依存性を見ることがしば

しば行われる．
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図 20 離散要素法の模式図．デバイダーは接触時にのみ相互作用があることを表す．(a) 法線方向 (バネ

定数 kN，粘性係数 ηN)．(b)法線方向 (バネ定数 kT，粘性係数 ηT)．

3.7　粉体のモデル

本節では粉体のシミュレーションモデルである離散要素法を紹介する．

P. A. Cundall and O. D. L. Strack, Géotechnique 29, 47 (1979).

非常に割り切った言い方をすれば，粉体とは接触した際に Kelvin-Voigtモデルで相互作用をする離散要素の

集団である．［なるほど教科書 3.5.2項 p.36にあるように，「ストレスを弾性的な寄与と粘性的な寄与の和で

表現するのは自然な成行き」として納得できる．］図 20 (a),(b)はそれぞれ順に，法線方向と接線方向の接触

力を模式的に表しており，Kelvin-Voigtモデルの図 15と比べて，粒子の接触の有無を表すデバイダー (2本

の平行線［の隔たり (divider)］)が追加されている．デバイダーは粒子が接触した場合にのみ閉じて，接触力

を伝えることを意味する．右側の接線方向の力の図において，摩擦係数 µの隣にある記号はスライダーと呼ば

れ，その意味は後の滑り条件の式 (3.55)に含まれている．

各粒子 iを質量mi，慣性モーメント Ii，粒径 di の拡がりを持つ物体［球状の対称こま］として記述しよう．

i番目の粒子の［中心］位置を ri，角速度を ωi，また

dij :=
1

2
(di + dj), rij := rj − ri, nij :=

rij
|rij |

とする．［ただしトルクの表式 (3.52)が適正となるよう，相対位置ベクトル rij (したがって方向単位ベクトル

nij)の定義を，粒子 iを始点として教科書の逆ベクトルに修正した．］重力が無視できる場合の並進と回転に

対する運動方程式は

mir̈i =
∑
j

Θ(dij − |rij |)fij , (3.51)

Iiω̇i =
1

2

∑
j

Θ(dij − |rij |)dij(nij × fij) (3.52)
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と書ける［本稿次節で補足］．ただしドットは時間微分，

Θ(x) =

{
1 (x > 0)

0 (それ以外)

はステップ関数［階段関数］であり，また fij は粒子 i, j 間の接触力［粒子 j が粒子 iに及ぼす力］を表す．

簡単のために xy 平面上での 2 次元的な運動を考えると接線方向は一意的に決まり，法線方向 nij :=

(nxij , n
y
ij)

T に対して［これを時計回りに 90◦ 回転した*13］接ベクトル tij := (nyij ,−nxij)T で与えられる (Tは

転置)．また角速度 ωi = (0, 0, ωi)は 1成分となる．このとき

ξN,ij := dij − |rij |, Tij := −
dij
2
fij · tij［反時計回りを正とするトルク，数係数 1/2を補った］

を用いて式 (3.52)は

Iiω̇i =
∑
j

Θ(ξN,ij)Tij (3.53)

と書ける［和の添字を i→ j と修正した］．また

換算質量 mij :=
mimj

mi +mj
,

相対速度成分 vN,ij := nij · rij , vT,ij := tij · rij +
1

2
(diωi + djωj)［本稿次節で補足］

接線方向の変位 ξT,ij(t) :=

∫ t

0

dt′ vT,ij(t
′)［本稿次節で補足］

を用いて，接触力の法線成分 fN,ij := fij · nij と接線成分 fT,ij := fij · tij をそれぞれ

fN,ij :=kNξ
3/2
N,ij −mijηN

√
ξN,ijvN,ij (3.54)

fT,ij :=

{
f̃T,ij (|f̃T,ij | < µ|fN,ij |)
µ|fN,ij | (それ以外)

(3.55)

f̃T,ij :=kT
√
ξN,ijξT,ij −mijηT

√
ξN,ijvT,ij (3.56)

で与える［本稿次節で補足*14］．ここで式 (3.54)の弾性力の項は Hertz (ヘルツ)の接触力と呼ばれ，粒子 i, j

の Young率を Yi, Yj，Poisson比を νi, νj として

f
(el)
N,ij =

ξ
3/2
N,ij

Dij

(
didj
di + dj

)1/2

, Dij :=
3

4

(
1− ν 2

i

Yi
+

1− ν 2
j

Yj

)
(3.57)

と書けることが知られている．式 (3.55)の上側は粘着接触を，下側は滑り接触を表しており，このように粉

体粒子の接触は動摩擦係数と静止摩擦係数を区別せず単一の摩擦係数 µで特徴付けるのが普通である．

• 円盤状の粉体粒子に対しては簡単に

FN,ij = kNξN,ij − ηNmijvN,ij

とモデル化できる．しかし実はこのとき反発係数 en は衝突速度に依らないことになる点で，

このモデルは単純化しすぎである［本稿次節で補足］．

*13 角速度 ωi は反時計回りを正としているため，接単位ベクトル tij も反時計回りの向きに採った方が見通しが良い．しかし本稿で
は教科書に合わせて，一貫して時計回りの向きの接ベクトル tij を用いて接線成分を定義する．

*14 本稿では nij を教科書と逆符号で定義したので，式 (3.54)右辺第 1項には負号を補わねばなるまい．
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• Hertz則 (3.54),(3.57)に対して反発係数 en は，簡単な摂動計算から

1− en ∝ V 1/5
N

となることが分かる．

– 早川尚男，散逸粒子系の力学 (岩波書店，2003).

– F. G. Bridges, A. Hatzes, and D. N. C. Lin, Nature (London) 309, 333 (1984).

– G. Kuwabara and K. Kono, Jpn. J. Appl. Phys. 26, 1230 (1987).

– N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Pöschel, Phys. Rev. E 53, 5382 (1996).

• 軟らかな基盤に硬い球を斜め衝突させると水切りのような状態になって
反発係数は容易に 1を超えることが可能である．

– M. Y. Louge and M. E. Adams, Phys. Rev. E 65, 021303 (2002).

– H. Kuninaka and H. Hayakawa, Phys. Rev. Lett. 93, 154301 (2004).

• 球同士の衝突では衝突の中心線がずれていると巻き込みのような効果で
負の反発係数が現れることもある．

– K. Saitoh, A. Bodrova, H. Hayakawa, and N. V. Brilliantov,

Phys. Rev. Lett. 105, 238001 (2010).

– P. Müller, D. Krengel, and T. Pöschel, Phys. Rev. E 85, 041306 (2012).

• 表面をコーティングしてナノクラスター間の引力を落として熱ゆらぎを上手く利用すると，
低速衝突では正面衝突でも反発係数が 1を超えるという理論計算がある．

– H. Kuninaka and H. Hayakawa, Phys. Rev. E 79, 031309 (2009).

– R. Murakami and H. Hayakawa, Phys. Rev. E 89, 012205 (2014).

3.7節について

■運動方程式 (3.51–52)について 粒子 i, j の中心間距離 (表面で接したとき dij)に関する階段関数により，

冒頭の予告通り粒子が接触した場合のみ力が働くことを表現できている．ただし式 (3.52)右辺のトルクでは

力 fij があたかも，粒子 i, j が接したときの中点 dij/2 (一般的な di ̸= dj のとき接点に一致しない)に作用す

るかのように立式している．全ての粒子が共通の直径 d を持ち，接触時にも大きく変形しないならば，上式

(3.52)で単に dij → dと置き換えて良い．

■相対速度と変位の成分 vT,ij , ξT,ij の定義について

粒子 iの粒子 j との接点は ri +
di
2
nij , 粒子 j の粒子 iとの接点は rj +

dj
2
nji

と表される．2点は考えている瞬間には一致しているものの一般には異なる速度を持ち，相対速度は(
ṙj −

dj
2
ωjtji

)
−
(
ṙi −

di
2
ωitij

)
= ṙij +

1

2
(diωi + djωj)tij (∵ tji = −tij)

と表される．方向単位ベクトル tij との内積を作ると，接線成分 vT,ij := tij · ṙij + (diωi + djωj)/2を得る．

x軸上を円盤 (半径 a，中心 (x, a)，反時計回りの角速度 ω)が滑らず転がる場合の拘束条件 ∆x+ ω∆t = 0

と同様に，粘着接触では接点を成す 2点の相対速度成分が vT,ij = 0となると考えられる．すると本文で定義

した接線方向の変位 ξT,ij(t) :=
∫ t
0
dt′ vT,ij(t

′) は粘着接触の間は初期値のまま不変であり，したがって (一定
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の fN,ij の下では)滑り接触に移行しないことになり，不条理である．実際には接線方向の変位は vT,ij の代わ

りに，5.2.1項と 5.6節のように粒子の中心の相対速度成分

v
(t)
ij := vij · tij = −(diωi + djωj)/2 (∵ vT,ij = 0) (2)

を用いて，ξT,ij(t) :=
∫ t
0
dt′ v

(t)
ij (t

′) で定義するのが自然と考えられる．実際，この ξT,ij は接触点の円盤表面

に沿う変位に他ならない．

もっとも 5.2.1項と 5.6節では回転の自由度を無視して，力学変数としては角速度を ωi = 0と扱っている

ため，式の上では接点の相対速度 vT,ij と粒子の相対速度 v
(t)
ij に違いはない．しかしその場合にも，円盤が滑

らず転がるための運動学的条件としては ωi ̸= 0が必要であり，したがって上式 (2)の v
(t)
ij は一般にノンゼロ

である．(左辺の与えられた v
(t)
ij の値に応じて，実際には右辺の角速度 ωi がゼロでない値をとると見る．)

■接触力 (3.54–57) について 式 (3.54),(3.56) は Kelvin-Voigt モデルを反映しており，また式 (3.55) は図

20の滑り状態を含んでいる．したがって階段関数を含む運動方程式 (3.51–52)と併せて，冒頭の予告通り図

20のモデルが具現化・実装されている．

ただし Kelvin-Voigt モデル (3.54),(3.56) において，力の歪 (速度) への依存性は非自明である．式 (3.54)

の右辺第 1項 (3.57)に関しては，教科書で挙げられている Landau=Lifshitz『弾性理論』§ 9にあるように，

Hooke弾性体の接触力として導出できる．このとき応力は歪の 1次式でありながら，力 f
(el)
N,ij が変位 ξN,ij の

3/2乗となるのは著しい．また式 (3.54)の第 2項は現象論的に，接線成分 (3.56)は単に法線成分 (3.54)との

類似性から関数形を与えている可能性が考え得る．

■「衝突速度によらない反発係数を持つ粒子を重力下で基盤と衝突させると有限時間内で無限回の衝突が起こ

る」(p.45，l.6–8)について 例えば床との反発係数が定数 eの物体を床からの高さ hから初速ゼロで落とす

と，額面通りにはその後，物体は床と無限回の衝突を繰り返すことになる．v0 =
√
2ghとおくと n(= 1, 2, · · · )

回目の衝突後の速度は vn = env0 であり，したがって n 回目の衝突から (n + 1) 回目の衝突までの時間

tn = 2vn
g ≡ e

nt0 (ただし t0 ≡ 2v0
g = 2

√
2h
g ) は指数関数的に短くなり，その和

∑∞
n=1 tn = e

1−e t0 は有限に留

まる．もちろんこの結果はある程度の時間が経つと物体は床で静止することを意味すると解釈するのが穏当で

ある．

3.8　単純剪断と純粋剪断

本稿では 3.1.2項のノートで既に指摘したように，単純剪断 (図 9)は純粋剪断 (図 10)と剛体的回転の重合

せから成る．図 10の純粋剪断では物体は直線 y = xの対角方向に沿って伸張されると同時に，それに直交す

る方向に沿って圧縮を受けており，四重極的な変形がある．［四重極モーメントで表される電荷分布 (の振動)

とアナロガスである．］
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第 4章　液体論の基礎

液体論は古くからの膨大な研究の蓄積があるが，その計算は往々にして複雑であり，また現在の学部の講義

では顧みられない傾向がある．本章では T を通常の環境の温度，また Boltzmann定数を kB = 1として，平

衡液体論を論じる．その対象は水のような複雑な液体ではなく，高密度状態にしたアルゴンなどの貴ガス［希

ガスとも表記］，あるいは水銀などの液体金属を念頭に置く．

4.1　状態方程式

体積 V = L3 の容器に閉じ込められた，位置 rN := {r1, r2, · · · , rN} = {qi}3Ni=1 の N(≫ 1)個の分子［質

量mの同種粒子］から成る液体を考えよう．温度 T (逆温度 β := 1/T )の平衡液体の圧力は，自由エネルギー

F = −T lnZN (ZN は分配関数)を用いて

P = −
(
∂F(V, T,N)

∂V

)
T,N

= T

(
∂

∂V
lnZN (V, T )

)
T,N

=
TL

3V

(
∂

∂L
lnZN (V, T )

)
T,N

(4.1)

と表される．［最後の等号では容器を立方体に保つ体積変化を考えた．］ところが分配関数において運動エネル

ギーの寄与は積分して分離できるので，ϕN (rN )を粒子間［相互作用の］ポテンシャル，xN = rN/Lを無次

元化した空間座標，hを Planck定数として

ZN (V, T ) =
1

N !h3N

∫ L

0

dq1 · · ·
∫ L

0

dq3N exp
[
−βϕN (rN )

]
=

V N

N !h3N

∫ 1

0

dx1 · · ·
∫ 1

0

dx3N exp
[
−βϕN (LxN )

]
(4.2)

となる［本稿次節で補足］．ここで(
∂ZN (V, T )

∂L

)
T,N

=
3N

L
ZN (V, T )

− βV N

N !h3N

∫ 1

0

dx1 · · ·
∫ 1

0

dx3N

(
∂ϕN (LxN )

∂L

)
T,N

exp
[
−βϕN

(
LxN

)]
(4.3)

である．さらに相対位置ベクトルを rij := ri − rj として，N 体ポテンシャルが 2体ポテンシャル ϕ(rij)の

分子対にわたる和 ϕN (rN ) = 1
2

∑
i,j( ̸=i) ϕ(rij)で書けると仮定すると*15，

∂ϕN (LxN )

∂L
=

1

2

∑
i,j(̸=i)

∂rij
∂L
· ∂ϕ(rij)

∂rij
=

1

2L

∑
i,j( ̸=i)

rij ·
∂ϕ(rij)

∂rij
(4.4)

が成り立つ．［このように“使い捨ての”変数 xを導入すると指数の L依存性の見通しが良くなる．］以上の

計算結果 (4.2–4)を式 (4.1)に代入すると，圧力は

P = nT − n2

6

∫
dr12 r12 ·

∂ϕ(r12)

∂r12
g2(r1, r2) (4.5)

*15 外場はなく 1体ポテンシャルの寄与はないとする．
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と表される．［第 2項で位置 r1, r2 に関する 2重の体積積分を，相対位置ベクトル r12 に関する単一の体積積

分に修正した．本稿次節で上式 (4.5)を確認する．］ここに n = N/V は粒子数密度であり，また g(r1, r2)は

2体の相関関数であって
n2g2(r1, r2) =

∑
i,j(̸=i)

⟨δ(r1 − ri)δ(r2 − rj)⟩ (4.6)

を満たす (⟨·⟩はアンサンブル平均)［本稿次節を見よ］．希薄極限を考えて式 (4.5)で nの 1次の項のみを残す

と，理想気体の状態方程式が得られる［kB を復元すると P = nkBT］．

ここでポテンシャルが球対称な場合 ϕ(r)→ ϕ(r)を考えると (r = |r|)，式 (4.5)は［球殻積分に直して］

P = nT − 2πn2

3

∫ ∞

0

dr ϕ′(r)g2(r)r
3 (4.7)

と書き換えられる (ϕ′(r) = dϕ(r)/dr)．このとき相関関数は

ng2(r) =
1

N

∑
i,j(̸=i)

⟨δ(r − rij)⟩ (4.8)

と書ける［本稿次節を見よ］．

ここで［直径 dの剛体球ポテンシャル］

ϕ(r) =

{
0 (r > d)

∞ (r < d)
∴ e−βϕ(r) =

{
1 (r > d)

0 (r < d)

で記述されるハードコア粒子［初出は 1.2節］を考える．変数

y(r) := eβϕ(r)g2(r) (4.9)

を導入すると式 (4.5)［ないし式 (4.7)］は

P

nT
=1− 2

3
πβn

∫ ∞

0

dr ϕ′(r)y(r)e−βϕ(r)r3

=1 +
2

3
πn

∫ ∞

0

dr r3y(r)
d

dr
e−βϕ(r) (4.10)

と書き換えられる．これは［任意の ϕ(r)に対する］有用な関係式である．特に今の場合 e−βϕ(r) はステップ

関数であり，その微分はデルタ関数 δ(r − d)なので，

P

nT
= 1 +

2

3
πn lim

r→d
r3y(r) = 1 +

2

3
πnd3g0(φ) (4.11)

を得る．ここに粒子の体積分率 φ = (π/6)nd3 に対して g0(φ) := g2(r = d;φ)である［本稿次節で補足］．

［以上，本節は概ね文献 [3, § 38]の内容に対応している．］

4.1節について

■配置分配関数 (4.2)について 運動量空間の積分
∏3N
i=1

∫
dpi exp

(
−β p

2
i

2m

)
=
(

2πm
β

)3N/2
は体積に依らな

いので，圧力の公式 (4.1)は ZN を配置分配関数 (4.2)に置き換えても成り立つ．式 (4.2)分母の因子 1/N !は

同種粒子の補正である．なお教科書では Planck定数を h→ 2πℏと書いている．Planck定数も運動量積分に

含めて配置分配関数 (4.2)からは省略し得る．
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■圧力の表式 (4.5)の確認 式 (4.1),(4.3–4)を組合せると

P =
TL

3V

1

ZN

∂ZN
∂L

=
TL

3V

1

ZN

3N

L
ZN −

βV N

N !h3N

∫
dNx

 1

2L

∑
i,j( ̸=i)

rij ·
∂ϕ(rij)

∂rij

 e−βϕN (LxN )


となる．最右辺の第 1項は N

V T = nT とまとめられるので，式 (4.5)の第 1項に一致する．

次に第 2項の N(N − 1) ≃ N2 通りの組 (i, j)にわたる和における各項は，積分変数の入れ替えにより同じ

寄与を持つので，

(第 2項) =− TL

3V

1

ZN
× βV N

N !h3N
× N2

2L

∫
dNxr12 ·

∂ϕ(r12)

∂r12
e−βϕN (LxN )

=− N2

6V

∫
dr1dr2 r12 ·

∂ϕ(r12)

∂r12

{
1

N !

∫
dr3 · · ·drN

h3N
e−βϕN (rN )

ZN

}
と書き換えられる．さらに積分変数 r1, r2 を重心座標と相対座標に変数変換すると，重心の積分は体積 V を

与える．そこで
∫
dr1dr2 → V

∫
dr12 と置き換え，さらに 2体の相関関数を

g(r1, r2) = V 2

{
1

N !

∫
dr3 · · ·drN

h3N
e−βϕN (rN )

ZN

}
(3)

で定義すると式 (4.5)の第 2項を得る．

こうして教科書の式 (4.5) の 2 重積分
∫
dr1dr2 は本稿のように，単一の積分

∫
dr12 に修正せねばならな

い．この措置は後の式 (4.7)と整合し，また次元の確認から正当化できる．実際あらかじめ運動量空間の積分

を省いたことを反映して，配置分配関数 (4.2)は [ZN ] = [V N/h3N ] = 1/(運動量)3N の次元を持つことに注

意すると，上式 (3)で定義した相関関数は後の式 (4.6),(4.8)の g2(r1, r2)と同じく，無次元量となっているこ

とが見て取れる．また kB = 1の単位系でエネルギー ϕ(r12)は温度と同じ次元を持つことに注意すると，式

(4.5)の第 2項は本稿のように修正して初めて第 1項と同じ次元 [T/V ]を持つことが見て取れる．

■2体の相関関数の表式 (4.6),(4.8)について 相関関数 g2(r1, r2)の定義式 (3)における因子

{· · · } = 1

V 2
g2(r1, r2)

は，配置 rN の確率 e−βϕN (rN )/ZN と状態数 dr3 · · ·dr3/N !h3N の積から成るので，2粒子を位置 r1, r2 に

見出す確率密度となっていることが見て取れる．実際これは規格化条件
∫
dr1dr2{· · · } = 1を満たしている．

よってこれを N2 倍した量は，粒子数密度 n(r) =
∑
i δ(r − ri) (そのアンサンブル平均が ⟨n(r)⟩ = n)に対

する 2体密度
n2g2(r1, r2) = ⟨n(r1)n(r2)⟩ =

∑
i,j

⟨δ(r1 − ri)δ(r2 − rj)⟩

である．r1 ̸= r2 を想定すれば和から i = j の項を省いて式 (4.6)のように書くことができ，式の意味はさほ

ど変わらない [3, § 49]．

次に g2(r1, r2)が球対称な関数 g2(r)である場合を考えよう．ただし r は相対位置ベクトル r = r1 − r2 の

大きさである．このとき式 (4.6)の両辺を重心 rG = (r1 + r2)/2で積分すると

n2V g2(r) =

∫
drG

∑
i,j(̸=i)

⟨
δ
(
rG +

r

2
− ri

)
δ
(
rG −

r

2
− rj

)⟩
=
∑
i,j(̸=i)

⟨δ(r − rij)⟩

となって，式 (4.8)が得られる．
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■式 (4.11)における「g0(φ) := g2(r = d;φ)」(p.51，l.4)について 体積分率 φとは与えられた体積に剛体

球が占める体積の割合であり，したがって剛体球の体積 4
3π
(
d
2

)2
= π

6 d
3 と数密度 nの積 φ = π

6nd
3 で与えら

れる．

さて，剛体球に対して y(r) = eβϕ(r)g2(r)は r > dで g2(r)に一致する一方で，素朴には一見すると r < d

では∞× 0 の不定形となる．そこで y(d) を極限値 limr→d+0 y(r) = g2(d) と解釈・定義するのが妥当であ

る．右辺 g2(d)は剛体球が表面で接触する距離 r = dで評価した相関関数であり，(与えられた nに対して)上

式 φ = π
6nd

3 を通じて体積分率 φの関数となっているため，これを改めて g0(φ)と表記するのは理に適って

いる．

4.2　接線応力

序文 (教科書 p.51)を引用する：

前節では圧力を考えたが，本節ではストレステンソルの非対角部分に対応する接線応力を考えてみよ

う．結論から言えば平衡状態では接線応力は現れない．つまり接線応力は非平衡状態になって初めて現

れる量である．

4.2.1　接触応力

応力は粒子の運動で決まる運動論的な応力と，粒子の配置で決まる接線応力から成る［本稿次項で補足］．

ここでは後者を考える．

引き続き粒子 i, j の相対位置ベクトルを rij := ri − rj として，相互作用ポテンシャル ϕ(rij) で記述され

る，粒子 iが粒子 j から受ける力 fij = −∂ϕ(rij)/∂rij を考えよう．ここである高さ z = hの面を介して働く

応力 (の第 α成分) σαz(h)は，z < h側の粒子が z > h側の粒子から受ける力を面の面積 A (容器の断面積)

で割ると得られるので，

σαz(h) =
1

A

∑
i,j(̸=i)

fij,αΘ(h− zi)Θ(zj − h) (4.12)

と表される．ただし Θ(x)は［3.7節で導入した］ステップ関数である．

特定の高さ hでの応力 (4.12)そのものよりも，容器の高さ Lにわたる平均の応力

σ̄αz :=
1

L

∫ L

0

dhσαz(h) (4.13)

に興味が持たれる．容器の体積を V := ALとすると，恒等式∫ L

0

dhΘ(h− zi)Θ(zj − h) = zjiΘ(zji) (4)

［本稿次項で確認］より，上式 (4.13)は

σ̄αz =
1

V

∑
i,j(̸=i)

fij,α

∫ L

0

dhΘ(h− zi)Θ(zj − h)

=
1

V

∑
i,j(̸=i)

fij,αzjiΘ(zji) (∵ 式 (4))
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=
1

2V

∑
i,j(̸=i)

[fij,αzjiΘ(zji) + fji,αziiΘ(zij)] ［第 2項ではダミー添字 i↔ j］

=− 1

2V

∑
i,j(̸=i)

fij,αzij{Θ(zji) + Θ(zij)} (∵ fij = −fji, rij = −rji)

=− 1

2V

∑
i,j(̸=i)

fij,αzij (∵ Θ(zji) + Θ(zij) = 1)

=− 1

V

∑
i<j

fij,αzij (4.14)

と書き換えられる．

z 軸に限らず任意の β 軸に垂直な面の応力も，同様の表式で与えられる．そのアンサンブル平均

⟨σcαβ⟩ := −
1

V

∑
i<j

⟨fij,αrij,β⟩ (4.15)

を接触応力と呼ぶ．［cは contact (接触)の頭文字と推察される．バルクにわたる平均 (4.13)と合わせて 2重

の平均操作が施されている．］

特にこれを 4.1節の平衡分布
dr1 · · · drN
N !h3N

e−βϕN (rN )

ZN
(5)

に関するアンサンブル平均 ⟨·⟩eq として評価すると，

⟨σcαβ⟩eq =− 1

V

∑
i<j

⟨fij,αrij,β⟩eq

=
1

2V

∑
i,j(̸=i)

∫
dr1 · · ·drN
N !h3N

e−βϕN (rN )

ZN

(
∂ϕ(rij)

∂rij

)
α

rij,β

=
N2

2V

∫
dr1dr2

∫
dr3 · · ·drN
N !h3N

e−βϕN (rN )

ZN

(
∂ϕ(r12)

∂r12

)
α

r12,β

=
N2

2V

∫
drG

∫
dr12

1

V 2
g2(r1, r2)

(
∂ϕ(r12)

∂r12

)
α

r12,β (rG := (r1 + r2)/2, g2(r1, r2)の定義式 (3))

=
n2

2

∫
dr12 g(r1, r2)

(
∂ϕ(r12)

∂r12

)
α

r12,β (4.16′)

が得られる．ここで α = β とおいて和をとると，接触応力の対角成分の平均として定義される圧力への寄与

P c := −1

3
⟨σcαα⟩eq = −1

6
n2
∫

dr12 g(r1, r2)
∂ϕ(r12)

∂r12
· r12

は式 (4.5)の右辺第 2項に一致する．また中心力を仮定して g2(r1, r2)→ g2(r12),
(
∂ϕ(r12)
∂r12

)
α
→ ϕ′(r12)

r12,α
r12

とおくと

⟨σcαβ⟩eq =
n2

2

∫
dr12

r12,αr12,β
r12

ϕ′(r12)g2(r12). (4.17′)

これは α ̸= β のとき変数 r12,α, r12,β の各々に対する奇関数の積分となって消える．よって本節冒頭で予告し

たように，接触応力の非対角成分 (接線応力)は平衡状態でゼロとなる．
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• 接線応力が残るには 2体の相関関数が異方的となる必要がある．

そのような例として系に剪断などの動的な外力がある場合が挙げられる．

• ここでは等方的な速度分布を仮定して運動量積分を分離した平衡分布 (5)を用いた．他方で速度分布に

異方性がある気体では，位置分布が等方的であっても接線応力は非ゼロの値をとり得る．

4.2.1項について

■第 1段落における「運動論的な応力と粒子の配置で決まる接線応力」(教科書 p.51下から 7行目)について

空間に固定した領域内に含まれる流体の運動量変化は周りの流体から受ける力積と，流入する流体が持つ運動

量によってもたらされる．標準的な力学では力が粒子の配置で決まるため (静的極限の遠隔相互作用を反映)，

力積の寄与は本稿で見る「粒子の配置で決まる接線応力」(p.51下から 7行目)に対応すると考えられる．さら

に式 (4.16)の段落では粒子間相互作用に起因する圧力への寄与が式 (4.5)の右辺第 2項に一致することが説明

される*16．他方で運動量の流入の寄与 (6.24)もまたある種の応力と見なされる．実際それは気体分子運動論

において分子が仮想的な壁に及ぼす圧力と同じ形を持ち，平衡状態では理想気体の状態方程式 P = nkBT で

記述される圧力 −Pδαβ は，この運動論的ストレス (6.24)に起因する [5, pp.117–120]．すると圧力の式 (4.5)

では既に移流と粒子間相互作用の寄与が，それぞれ第 1項と第 2項とで分離されていると見なせる．

■応力 (4.12)について i = j の項は粒子間力 fij,α がよく定義されないので，和から除いておいた．もっと

も i = j に対してはステップ関数の積が自動的にゼロとなる．近距離相互作用を考えると，実質的には面の近

くの粒子のみが寄与を持つことになる．なお有限の拡がりを持つ粒子を考えれば，中心が zi < h, zj > hに位

置する場合にも粒子は面 z = hに重なり得る．

■恒等式 (4)の確認 被積分関数は

Θ(h− zi)Θ(zj − h) =

{
1 (zi < hかつ h < zjのとき)

0 (それ以外)

であり，上側の条件が成立するには与えられた粒子の位置が zi < zj を満たしている必要がある．この条件は

相対位置ベクトル成分 zji = zj − zi > 0と等価であり，この下で∫ L

0

dhΘ(h− zi)Θ(zj − h) =
∫ zj

zi

dh = zj − zi = zji

となる．さもなくば積分はゼロとなるので，結果は式 (4)のようにまとめられる．

4.2.2　運動論的応力

以下に全文を引用する (教科書 p.53)：

また，運動量由来の応力がある．この運動量由来の応力は特に気体的振る舞いをする際に重要にな

る．例えば式 (6.24)を参照せよ．その詳細については第 6章（特に 6.3節参照）で述べることにして，

ここでは省略する．

*16 Newtonもまた空気中の音波を考察する際，圧力の起源を粒子間斥力に求めた [4, pp.158–163]．
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4.3　 Carnahan-Starling公式

平衡液体では 2体の相関関数 g2(r)を求めることに興味が持たれる．［そこから圧力 (4.7),(4.16)を計算で

きる．］ここでは液体論で近似としてよく用いられる Carnahan-Starlingの公式を［半ば天下りにではあるが］

説明する．

N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51, 635 (1969).

ビリアル展開
P

nT
= 1 +B2n+B3n

2 +B4n
3 + · · · (4.18)

から始めよう*17．稀薄系では相関関数は密度依存性を無視して平衡分布 g2(r) ≃ e(r) := e−βϕ(r) で近似でき

る．これを式 (4.2)に適用すると，第 2ビリアル係数の公式

B2 = 2π

∫ ∞

0

dr r2
[
1− e−βϕ(r)

]
(4.19a)

が見出される．
上式 (4.19a)の導出 (教科書 p.54脚注 4) 式 (4.7)に g2(r) = e(r)を代入し，e′(r) = −βϕ′(r)e(r)に注意すると

P

nT
= 1− 2πβn

3

∫ ∞

0

dr r3ϕ′(r)e(r) = 1 +
2πn

3

∫ ∞

0

dr r3
d

dr
(e(r)− 1).

最右辺における e(r)− 1はMayer関数と呼ばれる．［図 21のようなポテンシャル ϕ(r)に対しMayer関数の概形

は図 22のようである [3, pp.190–191]．敢えて e(r)から 1を引いているため，r → ∞でMayer関数はゼロにな

る．これを踏まえると］上式最右辺の部分積分から生じる境界項はゼロになると期待され，

P

nT
= 1− 2πn

∫ ∞

0

dr r2(e(r)− 1)

が得られる．これをビリアル展開 (4.18) と比較すると，係数 B2 は式 (4.19a) のように同定される．［実際，式

(4.19a)は密度 n依存性を持たないので，ビリアル展開の高次の項に寄与しない．］

note g2(r)はその定義 (3)より，ある分子から距離 r の位置に別の分子を見出す，無次元に規格化された確率密度と解

釈できる．それを 2 体の相互作用のみ考慮した因子 e−βϕ(r) で与える際に稀薄系の仮定を用いていると推察され

る．(他方で圧力 (4.5),(4.7)が 2体の相関関数 g2 で表されること自体は，その導出過程より稀薄系の仮定に依らな

いと考えられる．) なお文献 [3, § 38–39]では相関関数の仮定 g2(r) ≃ e(r)の代わりに，等価的に配置分配関数

のMayer関数 f(r) = e(r)− 1による展開を 1次まで評価して圧力を，したがってビリアル係数 B2 を計算した．

特に 4.1節末尾で導入したハードコア極限 1− e−βϕ(r) = Θ(d− r)に対して上式 (4.19a)を評価すると，

B2 = 2π

∫ d

0

dr r2 =
2

3
πd3 (4.19b)

を得る．またハードコア極限では B3 = 5
8B

2
2 = 5

18π
2d6 となることも知られている．

*17 教科書 p.54脚注 3の全文を引用する：
コロイドの場合は，稀薄極限でも理想気体にならないので，ここでの議論の変更が必要になるかもしれない．しかし稀薄極限

での浸透圧の式は理想気体の状態方程式と同じ形であり，同様の議論は可能である．実際，理論的にはブラウン運動をする多体
粒子系に対して，ここでの議論に変更は必要ない．
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図 21 相互作用ポテンシャル ϕ(r)の典型的な概形 図 22 対応する f(r) = e−βϕ(r) − 1の概形

ここでビリアル展開 (4.18) は，［4.1 節末尾で導入した体積分率 φ = π
6nd

3 へと変数を改め，各項を

Bkn
k−1 = bkφ

k (k = 2, 3, · · · )とすると］

P

nT
= 1 + b2φ+ b3φ

2 + b4φ
3 + · · · , bk :=

Bk
(πd3/6)k−1

(4.20)

と書き直せる．するとハードコア球に対する係数 B2, B3 の計算結果は b2 = 4, b3 = 10と焼き直される．これ

らの値を再現する一般項として，
bk = k2 + k − 2 (4.21)

がある程度上手くいく (k ≥ 4に対しては近似)．これを用いると式 (4.18)は

P

nT
= 1 +

∞∑
k=2

bkφ
k−1 = 1 +

∞∑
n=1

(n2 + 3n)φn =
1 + φ+ φ2 − φ3

(1− φ)3
(4.22)

となる*18．これを式 (4.11): PnT = 1 + 4φg0(φ)と等置すると

g0(φ) =
1− (φ/2)

(1− φ)3
(4.23)

を得る．式 (4.22–23) は Alder 転移 (斥力のみの液体系にも関わらず生じる固体への転移) が起きる φ の値

φA = 0.49以下で非常に精度の高い近似式であることが知られている．

4.4　相関関数の近似解法

本節では液体論における 2体の相関関数 g2(r1, r2)を近似的に求める手法を紹介する．

*18 最後の等号では和の公式
∞∑

n=1

nφn =
φ

(1− φ)2
,

∞∑
n=1

n2φn =
φ(1 + φ)

(1− φ)3

を用いた．［これらは無限等比級数和の公式
∑∞

n=0 φ
n = 1

1−φ
を φで微分して得られる．］
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4.4.1　 BBGKYヒエラルキーと Yvon近似

2体の相関関数 g2(r1, r2)の代わりに，ここでは改めて 2体の非平衡分布関数 f (2)(r1,v1; r2,v2; t)を考え

よう［それらの関係は本稿次項の式 (6)］．1体分布と 2体分布は

f(r,v; t) :=

N∑
i=1

⟨δ(r − ri(t))δ(v − vi(t))⟩ , (4.24)

f(r,v; r′,v′; t) :=
∑
i,j( ̸=i)

⟨δ(r − ri(t))δ(v − vi(t))δ(r − rj(t))δ(v − vj(t))⟩ (4.25)

で定義される．一般に N 体の分布関数を求めるには (N + 1) 体の分布関数が必要となる．これを BBGKY

(Bogoliubov, Born, Green, Kirkwood, Yvon)ヒエラルキー［階層性］という．したがって［無限後退に陥る

ことなく］分布関数を求めるには，何らかの近似解法を用いて分布関数の閉じた方程式を得る必要がある．

このことをソフトコア系に対して簡単に説明する．［文献 [6] のノートの付録では Liouville 方程式による

BBGKY階層性の導出を一般的にまとめた．］1体分布関数 f は連続の式

∂f

∂t
= − ∂

∂r
· Jr −

∂

∂v
· Jv (4.26)

を満たし，ここに

Jr =

N∑
i=1

⟨ṙiδ(r − ri)δ(v − vi)⟩ , (4.27)

Jv =

N∑
i=1

⟨v̇iδ(r − ri)δ(v − vi)⟩ (4.28)

である［本稿次項で補足］．ここで粒子分布の連続極限では Jr → vf と書ける．また粒子の運動方程式

v̇i = − 1
m

∑
j(̸=i)

∂ϕ(ri,rj)
∂ri

より

Jv =− 1

m

∑
i

⟨∑
j(̸=i)

∂ϕ(ri, rj)

∂ri
δ(r − ri)δ(v − vi)

⟩

=− 1

m

∫
dr′
∫

dv′ ∂ϕ(r, r
′)

∂r
f (2)(r,v; r′,v′; t) (4.29)

となる．［上式 (4.29)最右辺に f (2) の式 (4.25)を正直に代入すると，第 2辺に戻る．これらの流束 Jr,Jv を

式 (4.26)に代入すると分かるように，］このとき 1体分布 f の発展方程式には 2体分布 f (2) が現れる．

平衡状態では［分布 f の］時間発展がなくなるので，式 (4.26)は

− v · ∂
∂r
f(r,v) +

1

m

∫
dr′
∫

dv′ ∂ϕ(r, r
′)

∂r
· ∂
∂v

f (2)(r,v; r′,v′; t) = 0 (4.30)

と簡略化される．［式 (4.26)で ∂f
∂t = 0,Jr = fv,Jr = (式 (4.29))とおいた．］ここで［4.2.1項末尾で述べた

ように］，平衡液体論では速度分布が逆温度 β = 1/T での等方的なMaxwell分布

fM(v) =

(
2π

βm

)−3/2

exp

(
−βmv

2

2

) [
規格化条件

∫ ∞

0

fM(v)4πv2dv = 1 を満たす

]
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で与えられると仮定する．このとき 1体分布は位置分布 n(1)(r)との積

f(r,v; t→∞) = n(1)(r)fM(v) (4.31)

で表される［左辺の t→∞は平衡状態を意味する］．これを式 (4.30)に代入すると

∂

∂r
n(1)(r) = −β

∫
dr′

∂ϕ(r, r′)

∂r
n(2)(r, r′) (4.32)

を得る［本稿次項で確認*19］．外場 ϕex(r)がある場合，上式 (4.32)は

∂

∂r
n(1)(r) = −β ∂ϕex(r)

∂r
n(1)(r)− β

∫
dr′

∂ϕ(r, r′)

∂r
n(2)(r, r′) (4.33)

と修正される．［本稿次項で上式 (4.33)を確認する．こうして位置の平衡分布 n(1)(r)の支配方程式にも 2体

密度 n(2)(r, r′)が現れる．］

ここで低密度では相関を無視して

n(2)(r, r′) = n(1)(r)n(1)(r′) (4.34)

と書けると仮定する．この［無限後退の］切断近似を式 (4.33)に代入すると，n(1)(r)で閉じた式

∂

∂r
n(1)(r) = −β ∂ϕex(r)

∂r
− β

∫
dr′

∂ϕ(r, r′)

∂r
n(1)(r)n(1)(r′) (4.35)

が得られる．

ここで n(1)(r1)は，粒子を位置 r2 に固定したときの位置 r1 における条件付き密度 n
(1)
r2 (r1)に読み替える

ことで，2体相関関数 g2(r1, r2)に関係付けられる．実際，位置 r1, r2 に粒子を見出す確率密度は

n(2)(r1, r2)

N2
=
⟨n(1)(r2)⟩

N

n
(1)
r2 (r1)

N
=

n

N2
n(1)r2

(r1), (4.36′)

∵ ⟨n(1)(r2)⟩ = n. (4.38a)

これを確率密度の別表現
n(2)(r1, r2)

N2
=

1

V 2
g2(r1, r2) (4.37′)

と等置すると
n(1)r2

(r1) = ng2(r1, r2) (4.38b)

が得られる．

そこで式 (4.35)でn(1)(r)を上式 (4.38b)に置き換え，さらに球対称な関数 ϕ(r1, r2) = ϕ(r12), g2(r1, r2) =

g2(r12) (ただし r12 := |r1 − r2|)を仮定しよう．実際，平衡状態では g2(r)は相対距離 r = |r|のみに依存し，
動径分布関数と呼ばれる．すると，

∂

∂r1
g2(r12) = −β

∂ϕex(r1)

∂r1
− βn

∫
dr3

∂ϕ(r13)

∂r1
g2(r12)g2(r32) (4.39′)

を得る．［教科書では以降，粒子間相互作用による外場の“平均場”近似 ϕex(r1) = ϕ(r12)を行っているもの

の，本稿ではこの近似を用いない．］さらに

h(r) := g2(r)− 1 (4.40)

*19 教科書の n(2) の引数 (r1, r2)を修正した (式 (4.33)も同様)．
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を導入する．この関数は r →∞で h(r)→ 0を満たすため［本稿次項で補足］，Fourier変換可能である点な

どにおいて便利である．さらに |h(r)| ≪ 1を仮定して線形化すると，

∂

∂r1
h(r12) =− β

∂ϕex(r1)

∂r1
− βn

∫
dr3

∂ϕ(r13)

∂r1
h(r23), (4.41′)

∴ h(r12) =− βϕex(r1)− βn
∫

dr3 ϕ(r13)h(r23) (4.42′)

が導かれる［本稿次項で式 (4.41′)を導出］．上式 (4.42′)を Yvon近似の式という．［これが本項の最終的な結

果にあたる*20．］改めて両辺を n倍して左辺を

nh(r12) = n(g2(r12)− 1) = n(1)r2
(r1)− n =: δn(r1)

と書き換え，さらに r1 → r, r2 → r0, r3 → r′ とおくと，Yvon近似の式 (4.42′)は

δn(r) = −βnϕex(r − r0)− βn2

∫
dr′ h(r0 − r′)ϕ(r − r′) (4.43′)

とも書ける．最後に簡単のため外場が ϕex(r) = 0の場合を考えると，式 (4.43′)はポテンシャル ϕ(r)に対す

る線形応答の形

δn(r) =

∫
dr′ χ(r − r′)ϕ(r′), (4.44)

χ(r) :=− βn2h(r) (4.45′)

に書ける［本稿次項で補足］．

4.4.1項について

■連続の式 (4.26) について 系が生成・消滅することのない粒子から成ることを反映して，状態空間 (r,v)

における密度 f と流束 (Jr,Jv)をデルタ関数で適切に表現すれば，(アンサンブル平均 ⟨· · ·⟩をとらずとも)自

動的に連続の式 (4.26)が恒等的に満たされることが期待される．そのことの直接的な計算による確認は例え

ば文献 [7, pp.81–82]で見た．ここから逆に粒子系の流束を式 (4.27–28)のように同定したことが正当化され

る [6, pp.43–44]．

連続の式 (4.26) は衝突項のない Boltzmann 方程式 Df/Dt = 0 に対応する (D は式 (2.1) の Lagrange 微

分)．実際，式 (4.27–28)直後の連続極限「Jr → vf」(教科書 p.56下から 3行目)と同時に置き換え Jv = F
mf

を施すと，連続の式 (4.26)は

0 =
∂f

∂t
+

∂

∂r
· (vf) + ∂

∂v
·
(
F

m
f

)
=
∂f

∂t
+ v · ∂f

∂r
+

F

m
· ∂f
∂v

=
Df

Dt

と書き換えられる．ただし Df/Dt = 0の前提となる Liouvilleの定理が成り立つ条件として，力が位置のみ

の関数 F (r)であるか，あるいは Lorentz力 F (v) = qv ×B である場合を仮定した (文献 [6]のノートの付

録を見よ)．実際このとき上式第 2の等号のように

∂

∂v
· F (r) = 0,

∂

∂v
· F (v) = q

∂

∂vi
(ϵijkvjBk) = qϵijkδijBk = 0

とできるので，自己無撞着性を納得できる．

*20 Yvon近似の式 (4.42′)は右辺にも未知量 h(r)を含んでいる．そこで逐次代入による取り扱いが考えられる．
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Boltzmann方程式では力 F として外力のみを考慮し，粒子間相互作用の寄与は衝突項として別個に扱うの

に対し，式 (4.29)以降では粒子間相互作用を素直に F に含めており，したがって改めて衝突項を導入せずと

も，この意味で式 (4.26)は正確なダイナミクスを記述することに注意する．

■式 (4.32)の確認 平衡状態における 1体の分布関数の式 (4.31)に加えて，2体の分布関数が

f (2)(r,v; r′,v′; t→∞) = n(2)(r, r′)fM(v)fM(v′) (6)

と表されることを仮定する．ここでMaxwell分布 fM(v) ∼ e−βmv
2/2 の微分は ∂fM(v)

∂v = −βmvfM(v)とな

ることに注意すると，このとき平衡分布に対する支配方程式 (4.30)の左辺は

− v · ∂n
(1)(r)

∂r
fM(v) +

1

m

∫
dr′
(∫

dr′fM(v′)

)
∂ϕ(r, r′)

∂r
· ∂fM(v)

∂v
n(2)(r, r′)

=− fM(v)v ·
[
∂n(1)(r)

∂r
+ β

∫
dr′

∂ϕ(r, r′)

∂r
n(2)(r, r′)

]
(7)

とまとめられる．そこで右辺の因子 [· · · ]をゼロとおいて式 (4.32)を得る．

■式 (4.33)の確認 外場 ϕex(r)を考慮すると，Jv の式 (4.29)には付加的な項

− 1

m

N∑
n=1

⟨
∂ϕex(ri)

∂ri
δ(r − ri)δ(v − vi)

⟩
= − 1

m

∂ϕex(r)

∂r
f(r,v; t)

が現れる．その式 (4.30)左辺への寄与は + 1
m
∂ϕex(r)
∂r · ∂f(r,v;t)∂v であり，これを平衡分布 (4.31)に対して評価

すると

−fM(v)v ·
[
β
∂ϕex(r)

∂r
n(1)(r)

]
となる．これを上式 (7)に加え，改めて式全体をゼロとおくと式 (4.33)を得る．

■g2(r =∞) = 1 (式 (4.40)の箇所)について 式 (4.38b)より 2体相関関数 g2(r)は，ある粒子 (または適当

な空間原点)を中心とする球殻体積 4πr2dr の中の粒子数を

N

V
g(r)4πr2dr

で与える動径分布関数である．このとき

• 粒子の近く r → 0では斥力が強くなるので，他の粒子が存在できず g(r)→ 0となり，

• 遠方 r →∞では相互作用が及ばず，球殻には体積に比例する粒子数

N

V
4πr2dr

が含まれるので，g(r)→ 1となる

ことが期待される [8, pp.240–241]．

■式 (4.41′)の導出 式 (4.39′)に式 (4.40):g2(r) = h(r) + 1を代入し，右辺第 2項において h(r)の 2次の項

を棄てて h(r)に関して線形化する．さらに右辺第 1項で外力 ∂ϕex(r1)
∂r1

は弱いと仮定し，h(r12)との積は 2次

の微小量として落とす．すると

∂

∂r1
g2(r12) = −β

∂ϕex(r1)

∂r1
− βn

∫
dr3

∂ϕ(r13)

∂r1
(h(r23) + h(r12) + 1)
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が得られる．ここで「積分の両端でポテンシャルが消える」(教科書 p.58一番下)ため∫
dr3

∂ϕ(r13)

∂r1
= −

∫
dr3

∂ϕ(r13)

∂r3
= 0

となることに注意すると，h(r12) + 1の項は積分に寄与しない．このため式 (4.41′)が導かれる．

■線形応答 (4.44′–45′) の導出 式 (4.43′) で外場をゼロとおき，並進対称性 h(r0 − r′) = h(−r′) を利用す
る．また hは距離 r′ = |r′|の関数なので h(−r′) = h(r′)が成り立つことに注意すると，

δn(r) = −βn2

∫
dr′ h(r′)ϕ(r − r′) = −βn2

∫
dr′′ h(r − r′′)ϕ(r′′) (r′′ = r − r′)

となるので，式 (4.44′–45′)を得る．

4.4.2　熱力学的矛盾問題

動径分布関数 g2(r)を求めるのに用いた近似的理論によっては，得られる観測量の平衡統計値たちが一貫性

を持たない場合がある．これは熱力学的矛盾問題と呼ばれる．

例えばハードコア液体のエネルギーの平衡期待値 ⟨E⟩eq を考えよう．それは理想気体に対する表式と相互作
用の寄与

⟨E⟩ideq =
3

2
NT, ⟨E⟩poteq =

nN

2

∫
dr12 g2(r12)ϕ(r12)

の和

⟨E⟩eq =
N

2

[
3T + 4πn

∫ ∞

0

dr r2g2(r)ϕ(r)

]
=
N

2

[
3T + 4πn

∫ ∞

0

dr r2e−βϕ(r)ϕ(r)y(r)

]
［y(r)の式 (4.9)］ (4.46)

で与えられる［本稿次項で補足］．他方で圧力 (4.7)もまた g2(r)から計算される．しかるに，これらの量は F
を Helmholtzの自由エネルギーとして

⟨E⟩eq =
∂(βF)
∂β

, P = −∂F
∂V

で関係付けられる．さらに式 (3.6)の (等温)圧縮率 βT や化学ポテンシャル µもまた F を用いて

β−1
T = V

(
∂2F
∂V 2

)
T,N

, µ =

(
∂F
∂N

)
T,V

と表されるため，無関係ではない．ところが近似計算で得た g2(r)を用いると往々にして，これらの物理量の

間に相互矛盾が生じる．

4.4.2項について

■ハードコア粒子系のエネルギー平衡値 (4.46) について ΩN を式 (4.2) の配置分配関数として，分配関数

ZN =
(

2πm
β

)3N/2
ΩN を用いると，カノニカル分布によるエネルギーの期待値は

⟨E⟩eq = − ∂

∂β
lnZN = ⟨E⟩ideq + ⟨E⟩

pot
eq , ⟨E⟩ideq =

3N

2β
=

3

2
NT, ⟨E⟩poteq = − ∂

∂β
lnΩN
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と計算される．⟨E⟩poteq に関しては改めて期待値の直接的な計算の形に戻すと，

⟨E⟩poteq =

∫
dNr

N !h3N

1

2

∑
i,j(̸=i)

ϕ(rij)

 e−βϕN (rN )

ΩN
=
N2

2

∫
dr1dr2 ϕ(r12)

∫
dr3 · · · drN
N !h3N

e−βϕN (rN )

ΩN

=
N2

2V

∫
dr12 ϕ(r12)g2(r12) =

nN

2

∫
dr 4πr2ϕ(r)g2(r) (∵ g2(r)の定義式 (3))

と書き換えられるので，式 (4.46)を得る．

4.4.3　 Ornstein-Zernike関係式と満たすべき条件式

直接相関関数 c(r)を「自己無撞着な式」

h(r12) = c(r12) + n

∫
dr3c(r13)h(r23) (4.47)

で定義する．これは粒子 1,2の相関が短距離の直接的な相関 c(r12)と，粒子 3を介しての相関から成ること

を意味し［4体以上は考えない］，Ornstein-Zernikeの式と呼ばれる．これは Yvon近似の式 (4.42′)と同じ形

をしていることに注意しよう．ただし未知変数 h(r), c(r)を定めるには，もう 1つの方程式が必要である．

そこで条件付き密度が［特定の 2体間のみの相互作用を考慮した］平衡分布

n(1)r0
(r) ≈ n exp[−βϕ(r − r0)], ∴ βϕ(r − r0) ≈ − ln

[
n
(1)
r0 (r)

n

]

で与えられると仮定する．さらに多体効果による補正を［式 (4.43)の箇所で定義した］分布のズレ δn(r)に

関して線形な形に書いて

βϕ(r − r0) ≈ − ln

[
n
(1)
r0 (r)

n

]
+

∫
dr′X(|r − r′|)δn(r′) (4.48)

とおく．基本的にこれが後述［4.4.5項］の HNC (hypernetted chain)近似である．

• T. Morita, Prog. Theor. Phys. 20, 920 (1958).

• J. M. van Leeuwen, J. Groeneveld, and J. de Boer, Physica 25, 792 (1959).

ただし上式 (4.48)で定義した応答関数 X(|r|)［以降では X(r)と表記］は，この時点では未知関数である．

実はX(|r|)は直接相関関数 c(r)に一致する．実際，ln

[
n(1)
r0

(r)

n

]
= ln

[
1 + δn(r)

n

]
≈ δn(r)

n として式 (4.48)

を δn(r′)に関して線形化すると

βϕ(r − r0) ≈
∫

dr′
{
−δ(r − r′)

n
+X(r − r′)

}
δn(r′) (4.49)

となる．これは式 (4.44)を逆に解いた形になっているので，積分核

χ−1(r) := −T
{
δn(r)

n
+X(r)

}
(4.50)

は［簡単のため r0 = 0とおけば，代入により確かめられるように］∫
dr′′ χ(r − r′′)χ−1(r′′ − r′) = δ(r − r′) (4.51)
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を満たす［という意味で χ(r)の“逆行列”である］．式 (4.45):χ(r) = −βn(δ(r) + nh(r))［右辺第 2項を教

科書と逆符号に修正した*21］と式 (4.50)を上式 (4.51)に代入すると

h(r − r′) = −X(r − r′)− n
∫

dr′′X(r − r′′)h(r′′ − r′) (4.52)

となる．これを式 (4.47)と比較すると c(r) = −X(r)と同定できる．

なお式 (4.48)は

n(1)r0
(r) =n exp

[
−βϕ(r − r0) +

∫
dr′X(|r − r′|)δn(r′)

]
≈n exp [−βϕ(r − r0)]

[
1 +

∫
dr′X(|r − r′|)δn(r′)

]
(4.53)

と書き換えることもできる．これが Percus-Yevic近似である．

J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

4.4.4　 Percus-Yevic方程式

Percus-Yevick (PY)方程式は，直接相関関数を

c(r) = g2(r)[1− eβϕ(r)] (4.54)

と近似することに対応する．これを式 (4.47)に代入すると

g2(r)e
βϕ(r) − 1 = −n

∫
dr′
[
g2(r

′)eβϕ(r
′) − 1− h(r′)

]
h(|r − r′|) (4.55)

となる［本稿次項を参照］．

PY 方程式の利点は，その近似方程式が厳密に解けることにある．証明抜きに結果のみを紹介すると，

r∗ := r/dとして厳密解は

c(r) =

−
(1 + 2φ)2

(1− φ)4
+

6φ(1 + φ/2)2

(1− φ)4
r∗ − φ(1 + 2φ)2

2(1− φ)4
r∗3 (r∗ ≤ 1)

0 (r∗ > 1)

(4.56)

と書ける．

• B. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1974).

• M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963).

• E. Thiele, J. Chem. Phys. 39, 474 (1964).

• M. S. Wertheim, J. Math. Phys. 5, 643 (1964).

なお PY方程式は近似方程式なので，圧力 P と動径分布関数 g0(φ)は求め方により結果が異なる (熱力学

*21 対応して式 (4.52) 右辺第 1 項と結論 c(r) = −X(r) が本稿では教科書と逆符号になっている．この修正は後の式 (4.54–55) と
も整合する．
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図 23 剛体球系における充填率 φ = 0.49での動径分布関数 g2(r)の振舞い［本稿では教科書から図を採った］

的矛盾問題)．しばしばビリアル展開に基づく表式

P

nT
=
1 + 2φ+ 3φ2

(1− φ)2
, (4.57)

g0(φ) =
1 + φ/2

(1− φ)2
(4.58)

が用いられる．これらは式 (4.22–23)とはずれており，また数値計算等の結果とも一致しない．しかしながら

動径分布関数 g2(r)に関しては図 23のように，数値計算とのずれが小さい．また［HNC近似 (4.48)をさら

に近似すると PY近似 (4.53)が得られるので］，理屈の上では HNC近似の方が正確なはずであるにも関わら

ず，実際には PY近似の方がかえって正確な結果を与える．

4.4.4項について

■PY 方程式 (4.55) の式 (4.54) からの導出と，PY 近似 (4.53) との関係，および式 (4.54) の動機付け 式

(4.38b)と h(r)の定義式 (4.49)に基づき，PY近似の式 (4.53)の最左辺と最右辺でそれぞれ

n(1)r0
(r)→ ng2(r), δn(r′)→ n(g2(r

′)− 1) = nh(r′) (8)

と置き換えると，

g2(r)e
βϕ(r) − 1 = n

∫
dr′X(|r − r′|)h(|r′|) = n

∫
dr′′X(|r′′|)h(|r − r′′|) (r′′ = r − r′)

となる．ここで 4.4.3項で得た結果X(r′′) = −c(r′′)を適用し，さらに直接相関関数を式 (4.54)のように設定

すると PY方程式 (4.55)が導かれる．

なお式 (4.54)それ自体の意味は逐次近似の観点から理解できる．すなわち上記の置き換え n
(1)
r0 (r)→ ng2(r)

を 4.4.3項の多体効果を無視した第ゼロ近似 n
(1)
r0 (r)→ ne−βϕ(r) と等置すると，

g2(r) = e−βϕ(r), ∴ h(r) = g2(r)− 1 = e−βϕ(r) − 1 = e−βϕ(r)(1− eβϕ(r)) = g2(r)(1− eβϕ(r))

を得る．同様に式 (4.47)で多体効果の項を無視した関係 h(r) = c(r)と上式を比較すると式 (4.54)を得る．
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4.4.5　 HNC方程式

HNC近似では直接相関関数は

c(r) = g2(r)− 1− ln g2(r)− βϕ(r) (4.59)

を満たし，このとき

ln
[
g2(r)e

βϕ(r)
]
= −n

∫
dr′
{
ln
[
g2(r

′)eβϕ(r
′)
]
− h(r′)

}
h(|r − r′|) (4.60)

が成り立つ［本稿次項を参照］．ここで［r →∞で成り立つ式］y(r) := eβϕ(r)g2(r) ≈ 1を念頭に

ln
[
g2(r)e

βϕ(r)
]
= ln

[
1 + (g2(r)e

βϕ(r) − 1)
]
→ g2(r)e

βϕ(r) − 1

と近似すると PY近似［式 (4.55)］が再現される．

4.4.5項について

■HNC 方程式 (5.60) の式 (4.59) からの導出と，HNC 近似 (4.48) との関係 HNC 近似の式 (4.48) は式

(4.53)の 1行目と等価であり，そこで再び置き換え (8)を施すと

ln[g2(r)e
βϕ(r)] = n

∫
dr′X(|r − r′|)h(|r′|) = n

∫
dr′′X(|r′′|)h(|r − r′′|)

となる．ここで 4.4.3項で得た結果X(r′′) = −c(r′′)を適用し，これと連動して直接相関関数を式 (4.59)の逆

符号
c(r) = −(g2(r)− 1) + (ln g2(r) + βϕ(r)) = ln[g2(r)e

βϕ(r)]− h(r)

と設定すると，HNC方程式 (4.60)が導かれる．
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第 5章　固体のレオロジー

本章では粉体のように，分散した粒子が高密度になり固体的に振舞う場合のレオロジーに関して，最近の研

究成果をまとめる．5.1節では固体とは何かを簡単に論じる．5.2節では文献

M. Otsuki and H. Hayakawa, Soft Matter 19, 2127 (2023)

に基づき，可解な 3体モデルを用いて粉体多体系の応力歪曲線の再現を試みる．5.3節で 3体モデルの計算と

シミュレーションの直接比較を行う．5.4節では固有モード解析に基づき応力歪曲線の再現を試みる．5.5節

では固有モード解析を振動剪断系に適用する．

5.1　固体とは何か

物理学の教科書ではしばしば固体と液体の差異は，離散対称性を持つ状態と連続対称性を持つ状態の違いと

して説明される．しかし離散対称性は結晶特有の性質であり，アモルファス固体を含む固体全般を特徴付ける

ことはできない．そこで我々は固体の特徴を剛性の存在に求める．

平衡統計力学を用いれば体積剛性 (弾性)率K を計算できる．実際，体積剛性率の定義式 (3.5)に圧力 (4.7)

を代入し，n = N/V の微分が ∂n/∂V = −n/V となることに注意すると

K = nT − 4π

3
n2
∫ ∞

0

dr ϕ′(r)g2(r)r
3 (5.1)

を得る．この結果によれば気体もゼロでない剛性率を持つので，剛性の存在だけで固体を特徴付けるのは難し

い．［気体では理想気体の項 (第 1項)が主要項なので，固体と液体を対象とする］固体・液体相転移を論じる

には T → 0の状況を考える必要がある．実に通常の固体ではポテンシャル寄与 (第 2項)が支配的となる．と

ころが g2(r) ≥ 0であることに注意すると，弾性体が安定な条件 (2.38):K > 0が成り立つには ϕ′(r) < 0［斥

力 f(r) = −ϕ′(r) > 0］の領域が必要である．斥力由来の剛性は粒子が分散している粉体系で実際に観測され

る．そのような系では高密度に圧縮された状態が不安定であり，圧縮がない状態へと緩和することが剛性の起

源となっていると理解できる．また純粋な斥力系に限らず，例えば平衡位置への復元力があれば，斥力の働く

範囲が生じるため，K > 0が満たされる余地がある．

5.2　 3体モデル

ここでは 3体の粒子のみを考慮した弾塑性モデルを用いて，［3.6節で導入した］貯蓄弾性率 G′(ω)と損失

弾性率 G′′(ω)を記述することを試みる．粒子が結晶を組んだ状態では，3体モデルの解析解は驚くほど正確

に G′, G′′ を再現する．

5.2.1　モデル

xy 面内で振動剪断歪を受ける 2次元の粉体系を，摩擦のある円盤の集まり (全て直径 d)としてモデル化し

よう (図 24)．多体問題を理論的に直接扱うのは困難である．そこで図 25のような 3体の問題の解析を通じて

多体を記述することを試みる．粒子の相互配置を凍結したまま剪断をかけられるためには，粒子が少なくとも

3つ必要なので，3体モデルは考え得る最も簡単なモデルと言える．そこで多体問題としても図 24 (b)のよう

なランダムな運動自由度のある粉体は対象とせず，図 24 (a)のように結晶を組んだ粉体を考える．
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図 24 結晶になっている多体系 (a)と乱れた系 (b)の模式図

図 25 3体モデルの模式図［座標軸を描き加えた］

剪断をかける方向を x軸に選び，時刻 tでの剪断歪を γ(θ(t))とすると，粒子間距離を l として結晶を組ん

だ 3粒子の配置は

r1(t) =

(√
3γ(θ(t))l

4
,

√
3l

4

)
, (5.2)

r2(t) =

(
−
√
3γ(θ(t))l

4
− l

2
,−
√
3l

4

)
, (5.3)

r3(t) =

(
−
√
3γ(θ(t))l

4
+
l

2
,−
√
3l

4

)
(5.4)

で決まる［本稿次項で補足］．後の便宜のため圧縮歪 ε := (d− l)/d = 1− l/dを導入しておく．また剪断歪は
［式 (3.36)と同様に］，

γ(θ) = γ0 sin θ, γ0 : 歪振幅， θ = ωt :位相， ω :角振動数 (5.5)

で与える．
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ここでは［3.7節の定義を改めて］，粒子 i, j に関する相対位置ベクトルと方向単位ベクトルを

rij := ri − rj =

(
xij
yij

)
, nij :=

rij
rij

=

(
nij,x
nij,y

)
, tij :=

(
−nij,y
nij,x

)
(rij = |rij |)

で定義する．その上で粒子 i, j 間の相互作用を接触力

fij =
(
f
(n)
ij nij + f

(t)
ij tij

)
Θ(d− rij) (5.6)

で与える (Θ(·)はステップ関数)．また粒子回転の効果は無視する*22．

kN をばね定数，u
(n)
ij := d− rij を粒子間の相対 (圧縮)接触距離として，法線方向の接触力を

f
(n)
ij = kNu

(n)
ij (5.7)

で与える［3.7 節後半 (粘性項なし)］．接線方向に関しても今一つのばね定数 kT を導入して接触力 f̃
(t)
ij =

kTu
(t)
ij を考え［u

(t)
ij については 3.7節の変位 ξT,ij のノートを参照*23］，その µdf

(n)
ij (µd は摩擦係数)との大

小に応じて接触力を
f
(t)
ij = min

(
|f̃ (t)ij |, µdf

(n)
ij

)
sgn(f̃

(t)
ij ) (5.8)

で与える (sgn(·)は符号関数)［式 (3.55–56)に対応*24］．

ここで接触応力 σ := σxy を法線方向と接線方向の力の寄与に分けて

σ(θ; γ0, µd) = σ(n)(θ; γ0, µd) + σ(t)(θ; γ0, µd) (5.9)

と書こう．［引数は振動剪断歪 (5.5)の位相 θ，振幅 γ0，および摩擦係数 µd である．］運動学的寄与［P = nT］

を除いた接触応力の公式 (4.15)を適用すると，各項は

σ(n)(θ; γ0, µd) =−
1

A

∑
i

∑
j(>i)

xijyij
rij

f
(n)
ij , (5.10)

σ(t)(θ; γ0, µd) =−
1

A

∑
i

∑
j(>i)

x 2
ij − y 2

ij

rij
f
(t)
ij (5.11)

と表される．ここに A =
√
3l2/2は 2次元系の面積である．［以上を本稿次項で補足する．］また左辺の独立

変数 θ, γ0, µd を右辺では明示しない．同様に接触力による圧力は，公式 (4.15)の対角成分の平均 (の逆符号)

として

P (θ; γ0, µd) =
1

2A

∑
i

∑
j(>i)

(xijfij,x + yijfij,y) (5.12)

*22 このときストレステンソルは対称と仮定できる．2.3節末尾を見よ．
*23 本項では粒子 i, j の相対位置ベクトルを rij = ri − rj = (xij , yij)，接単位ベクトルを tij = (−yij , xij)/rij，相対速度

vij = ṙij の成分を v
(t)
ij = vij · tij で定義したため，粘着接触では接触点が変化せず，接触点の相対速度成分は

0 = tij ·
{(

vi − ωi
d

2
tij

)
−

(
vj + ωj

d

2
tij

)}
= v

(t)
ij −

d

2
(ωi + ωj),

粒子の中心の相対速度成分は v
(t)
ij = d

2
(ωi + ωj)と表される．

*24 ただし粒子 j に対して粒子 i が ±tij 向きに変位するとき，接線方向の力が逆向き (∓tij 向き) となるには，式 (5.8) の

符号の因子は正しくは −sgn(u(t)ij ) = −sgn(f̃ (t)ij ) と考えられる (tij の定義が何であれ)．他方で 5.6 節では変位が逆符号

u
(t)
ij (t) = −

∫ t
0 dt′v

(t)
ij (t′)で定義しており，その場合にはこの修正は不要である．
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と書ける．

我々は準静的な変形を考え，σ と P の ω → 0での振舞いを解析する．また振動剪断を何回か繰り返して初

期条件の影響がなくなった，統計的定常状態における σ(θ)を論じる．なお貯蓄弾性率 G′ と損失弾性率 G′′ は

それぞれ式 (3.47),(3.48)で定義する．［式 (3.45)の箇所で見たように，貯蓄弾性率 G′ は剛性率に関係する．

それは 5.1節で挙げられた，固体を特徴付ける量に他ならない．］

5.2.1項について

■3体の系と多体系の関係について 3体の系に対して求めたストレスがそのまま直接，多体系のストレスと

比較されることになる．ストレスはその示強性から，着目している領域が多数の粒子を含む限り領域の採り方

に依らず，そこで適当に小さな領域を選んでストレスを計算すれば良い．しかし領域が 3体しか含まない場合

にも多体系に対する巨視的なストレスが正確に得られることは，必ずしも自明ではない．あるいはそれは結晶

系の対称性から，ある程度は期待されることかもしれない (教科書 p.75の「アフィン変形」)．

■粒子配置 (5.2–4) について 歪が γ = 0 のとき，粒子の中心位置 (5.2–4) は図 25 に描かれているように，

一辺 lの正三角形の頂点の座標

r1 =

(
0,

√
3l

4

)
, r2 =

(
− l
2
,−
√
3l

4

)
, r3 =

(
l

2
,−
√
3l

4

)
(9)

を与える．ここに粒子の一定の y 座標に比例する変位 (γy, 0)を加えると式 (5.2–4)を得る．ここでは原点は

正三角形の重心には一致せず，x軸は正三角形の高さを 2等分する位置に選んであるため，歪の項は単に粒子

1と粒子 2,3とで同大逆符号になる．

■滑り接触では変位 u
(t)
ij が一定に保たれること (教科書 p.68の l.9–11，p.97の l.2–3)について 接触力の接

線成分が f
(t)
ij = µdf

(n)
ij に達した後の滑り接触においても，粘着接触の場合の式 f

(t)
ij = kTu

(t)
ij を保持するな

らば (式 (5.101)の箇所で実際にそうしているように)，人為的な定義として u
(t)
ij は一定の閾値に留まると見な

さねばならない．

■接触応力 (5.10–11)と 2次元系の面積 Aについて 奥行き z 方向には単位長さの厚みを想定すると，接触

応力の公式 (4.15)は面積 Aの 2次元系に対して V → Aと置き換えた式

σαβ = − 1

A

∑
i<j

fij,αrij,β (α, β = x, y)

に修正されると考えられる．ただし上式ではバルクにわたる平均のみを考慮しており，アンサンブル平均 ⟨·⟩
の表記は省略した．

3体モデルのように極端に粒子数の少ない系に対してストレスのバルク平均の概念が意味を成すかは疑問の

余地があるものの，平均のストレスが公式 (4.15)で与えられること自体は，式 (4.15)の導出が任意の粒子数

の系に対して成り立つため正しい．3体系に対してもストレスを式 (4.15)で定義したことは，5.3節でその有

用性が判明することから結果的に正当化できる．

ここで脚注*22を踏まえ，あらかじめ接触応力 σ := σxy をストレステンソルの対称性が明白に保証される形

σ =
1

2
(σxy + σyx) = −

1

2A

∑
i<j

(fij,xyij + fij,yxij)
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に書こう．これが本文の「回転があるので僅かに存在する非対称部分は無視して」(教科書 p.68，l.12–13)と

いう但し書きの意味するところと推察される．実際，ここに式 (5.6):

fij,x = f
(n)
ij

xij
rij
− f (t)ij

yij
rij
, fij,y = f

(n)
ij

yij
rij

+ f
(t)
ij

xij
rij

を代入すると，法線方向と接線方向の力 f
(n)
ij , f

(t)
ij の寄与はそれぞれ順に

σ(n) = − 1

A

∑
i<j

xijyij
rij

f
(n)
ij : (5.10), σ(t) = − 1

A

∑
i<j

x 2
ij − y 2

ij

rij
f
(t)
ij : (5.11)

と同定される．

2次元系の面積 Aとしては粒子の位置 (9)を頂点とする一辺 lの正三角形の面積 A =
√
3l2/4ではなく，元

の公式 (4.15)の導出過程に即して，底辺 r23，高さ y12(= y13)の長方形の面積 A =
√
3l2/2を採っているこ

とに注意する．実際，正三角形とは対照的にこの長方形は粒子対 1,2および 1,3の相互作用を明白に含んでい

る．他方で粒子 2,3を結ぶ線は長方形の境界に位置するため，粒子対 2,3の相互作用をこの長方形に含まれる

と見なすかには曖昧さがあるものの，もとよりストレス (5.104),(5.107)に粒子対 2,3は寄与しないため，この

点は実質的に問題にならない．同様に粒子 1の左右に粒子が隣接している場合にも，それらと粒子 1の相互作

用は考えなくて良い．したがって 3粒子の周りに粒子が敷き詰められている場合にも，(少なくとも歪 γ = 0

の平衡位置では)この長方形は粒子対 (i, j) = (1, 2), (1, 3) (および (2,3))以外の相互作用を含まない．さらに

5.6節で見るように，長方形の面積 A =
√
3l2/2を用いて初めてストレスの式 (5.13),etc.が導かれる．

5.2.2　理論解析

γ0 ≪ ε≪ 1を仮定すると［圧縮歪 εは 5.2.1項で定義］，式 (5.10)の σ(n)(θ)は

σ(n)(θ) =

√
3kNγ(θ)

4
(5.13)

となる．また式 (5.11)の σ(t)(θ)は粘着状態 γ0 < γc(µd)に対して

σ(t)(θ) =

√
3kTγ(θ)

4
(5.14)

となり，ここに

γc(µd) =
4µdkNε

3kT
(5.15)

である．他方で γ0 ≥ γc(µd)の場合には

f
(t)
12 =



µdkNε√
3

(
0 ≤ θ < π

2

)
µdkNε√

3
+

√
3kT(γ(θ)− γ0)

4

(π
2
≤ θ < π

2
+ Ψ

)
−µdkNε√

3

(
π

2
+ Ψ ≤ θ < 3π

2

)
−µdkNε√

3
+

√
3kT(γ(θ)− γ0)

4

(
3π

2
≤ θ < 3π

2
+ Ψ

)
µdkNε√

3

(
3π

2
+ Ψ ≤ θ < 2π

)
(5.16)
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図 26 理論式 (5.9),(5.13–16)による応力歪曲線 (σ-γ グラフ)．ここでは kT/kN = 1.0, ε = 0.001, µd =

0.01とした．［このとき式 (5.15)の γ0 は 1.3× 10−5 となるので，(a)は常に粘着状態であり，(b)–(d)は

接触状態の転移を伴う．本稿では教科書から図を採った．］

となり，ここに Ψ = cos−1
(
1− 2γc(µd)

γ0

)
である．π

2 ≤ θ < π
2 + Ψと 3π

2 ≤ θ < 3π
2 + Ψは粘着接触状態と

なっており，それ以外は滑り接触状態である．以上の導出は 5.6節にまとめてある．すると応力歪曲線は図 26

のような理論曲線となり，接触状態の転移がある γ0 ≥ γc の場合は有限面積を囲む平行四辺形のヒステリシス
ループが得られる．粘性がなくとも面積がW ̸= 0となり得ることは，3.6節末尾の弾塑性モデルで既に見た

通りであり，これは有効粘性 (3.43)がゼロでないことに対応する［後の式 (5.20–21)］．

γ0 の増大に伴い，応力の最大値

σ̃max = (σ/γ0)|γ/γ0=1 =


√
3

4
(kN + kT) (γ0 < γc)√

3

4
kN +

µdkNε√
3γ0

=

√
3

4

(
kN + kT

γc
γ0

)
(γ0 ≥ γc)

は，その最大値
√
3(kN + kT)/4 から最小値

√
3kN/4 へと減少する (図 26 も見よ)．しかるに貯蓄弾性率 G′

は近似的に σ̃max で与えられる［本稿次項で補足］．したがって σ̃max の減少は G′ の減少を意味する．また損

失弾性率 G′′ は［定義式 (3.48):G′′ = 1
πγ 2

0

∮
σdγ から分かるように］ループの面積に比例する．ところが図

26の直線 (a)はもとより，γ0(> γc)の比較的大きい (d)においてもループが潰れているので［γ0 →∞で粘
着状態の幅 Ψ→ 0］，γ0 の中間的な値で G′′ はピークを持つ．
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式 (5.9),(5.13–16)を代入すると，貯蓄弾性率 (3.47)は

G′ =


√
3(kN + kT)

4
(γ0 ≤ γc(µd))√

3

4

{
kN +

kT
π
(Ψ− sinΨ cosΨ)

}
(γ0 > γc(µd))

(5.17)

と求まる［本稿次項で式 (5.18)と併せて確認］．振幅歪 γ0 が γc(µd を超えると，G′ は第 2式から第 1式へと

減少する．［第 2式の因子 (Ψ− sinΨ cosΨ)は常に π 以下である*25．］このような G′ の減少は，既に文献

• M. Otsuki and H. Hayakawa, Phys. Rev. E 95, 062902 (2017).

• M. Otsuki and H. Hayakawa, Phys. Rev. Lett. 128, 208002 (2022).

で知られていた．なお上式 (5.17)は等価的に

G′ =


√
3(kN + kT)

4
(γ0 ≤ γc(µd))√

3

4
kN +

√
3kTγc
πγ0

sinΨ +

√
3kT
4π

(Ψ + sinΨ cosΨ− 2 sinΨ) (γ0 > γc(µd))
(5.18)

と書くこともできる．実際 γc/γ0 = (1− cosΨ)/2なので，上式 (5.18)第 2式は

G′ =

√
3

4

{
kN +

kT
π
[2(1− cosΨ) sinΨ + Ψ+ sinΨ cosΨ− 2 sinΨ]

}
=

√
3

4

{
kN +

kT
π
(Ψ− sinΨ cosΨ)

}
(5.19)

となって，式 (5.17)第 2式に戻る．

同様に式 (5.9),(5.13–16)を代入すると，損失弾性率 (3.48)は

G′′ =

0 (γ0 ≤ γc(µd))√
3kT
4π

(1− cos2 Ψ) (γ0 > γc(µd))
(5.20)

と求まる［本稿次項で式 (5.21)と併せて確認］．これは等価的に

G′′ =


0 (γ0 ≤ γc(µd))√
3kT
π

{
γc
γ0

cosΨ + sin4
(
Ψ

2

)}
(γ0 > γc(µd))

(5.21)

とも書ける．

上式 (5.20)から γ0 が γc を超えると，γ0 の増大に伴い G′′ はゼロから増大してピークとなり，その後ゼロ

へと漸近することが読み取れる［脚注*25参照］．これは視覚的には図 26のループに囲まれた面積の増減に対

応する．この 3体モデルの G′′ の振舞いは多体モデルのシミュレーション結果

M. Otsuki and H. Hayakawa, Phys. Rev. Lett. 128, 208002 (2022).

と基本的に同じである．

なお 5.6節で示すように，圧力については

P0 := P (θ = 0, γ0, µd) =
√
3kNε (5.22)

が得られる．

*25 γc : γ0 →∞のとき Ψ : π → 0である．
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5.2.2項について

■σ̃max ≃ G′ (教科書 p.71，l.2–3)について 原論文の説明をここに載せておく．応力 σ(θ)は位相 θ に関し

て周期 2π の周期関数なので，

σ(θ) = γ0

∞∑
n=1

G′
n sin(nθ) + γ0

∞∑
n=1

G′′
n cos(nθ)

と Fourier展開できる．これを式 (3.46)と比較すると G′
1 = G′, G′′

1 = G′′ と同定できる．そこで n > 1の高

調波成分による補正を無視すると，

G′ =
σ(θ = π/2)

γ0
= σ̃max.

■G′ の式 (5.17–18)の導出 まず γ0 < γc でのストレスは式 (5.9),(5.13),(5.14)より

σ(θ) =

√
3

4
(kT + kN)γ(θ) =

√
3

4
(kT + kN)γ0 sin θ

と表される．よって貯蓄弾性率 (3.47)は

G′(ω) =
1

πγ0

∫ 2π

0

dθ σ(θ) sin θ =

√
3

4π
(kT + kN)

∫ 2π

0

dθ sin2 θ =

√
3

4
(kT + kN)

となり，式 (5.17–18)の第 1式が得られる．

次に γ0 ≥ γc の場合を考える．σ(n) は依然として式 (5.13)で表されるので，その貯蓄弾性率 G′ への寄与は

再び
√
3kN/4で与えられる．これが式 (5.17–18)第 2式の第 1項である．他方で σ(t) の式 (5.16)は，5.6節

ノートの式 (13),(14)より

σ(t) =
1√
3l
f
(t)
12 =

1√
3l
kTu

(t)
12 =

√
3kTγ0
4

× 4

3

u
(t)
12 /l

γ0
,

∴ 1

πγ0
σ(t)(θ) =

√
3kT
4π

×



γc
γ0

(
0 ≤ θ < π

2

)
γc
γ0

+ (sin θ − 1)
(
π
2 ≤ θ <

π
2 +Ψ

)
− γc
γ0

(
π
2 +Ψ ≤ θ < 3π

2

)
− γc
γ0

+ (sin θ + 1)
(
3π
2 ≤ θ <

3π
2 +Ψ

)
γc
γ0

(
3π
2 +Ψ ≤ θ < 2π

)
と書き換えられる．すると G′ への寄与は

G(t)′ ≡ 1

πγ0

∫ 2π

0

σ(t)(θ) sin θdθ

=

√
3kT
4π

[
γc
γ0

∫ π
2

0

sin θdθ +

∫ π
2 +Ψ

π
2

{(
γc
γ0
− 1

)
sin θ + sin2 θ

}
dθ − γc

γ0

∫ 3π
2

π
2 +Ψ

sin θdθ

+

∫ 3π
2 +Ψ

3π
2

{(
−γc
γ0

+ 1

)
sin θ + sin2 θ

}
dθ +

γc
γ0

∫ 2π

3π
2 +Ψ

sin θdθ

]
.

ここで最右辺の角括弧 [· · · ]において，

(第 1項) + (第 5項) =
γc
γ0

∫ π
2

−π
2 +Ψ

sin θdθ =
γc
γ0

sinΨ
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とまとめられる．また第 3項は変数変換 θ′ = θ − π により上式 (の第 2辺)に一致することが分かる．同様に

第 4項は

(第 2項) =

∫ π
2 +Ψ

π
2

{(
γc
γ0
− 1

)
sin θ + sin2 θ

}
dθ =

(
γc
γ0
− 1

)
sinΨ +

1

2
Ψ +

1

4
sin 2Ψ

に一致する．以上より

G(t)′ =

√
3kT
4π

[
2

(
2
γc
γ0
− 1

)
sinΨ + Ψ+ sinΨ cosΨ

]
を得る．これは式 (5.18)第 2式の残りの項に正確に一致している．

最後に式 (5.19)を用いて式 (5.18)を書き換えると，式 (5.17)が得られる．

■G′′ の式 (5.20–21)の導出 式 (5.13)の σ(n) の G′′ に対する寄与は

G(n)′′ ≡ 1

πγ0

∫ 2π

0

σ(n)(σ) cos θdθ =

√
3kN
4π

∫ 2π

0

sin θ cos θdθ = 0.

同様に γ0 < γc での σ(t) (式 (5.14))の寄与もゼロなので，式 (5.20–21)の第 1式を得る．

他方で γ0 ≥ γc では σ(t) は式 (5.16)で与えられ，その G′′ への寄与は

G(t)′′ ≡ 1

πγ0

∫ 2π

0

σ(t)(θ) cos θdθ

=

√
3kT
4π

[
γc
γ0

∫ π
2

0

cos θdθ +

∫ π
2 +Ψ

π
2

{(
γc
γ0
− 1

)
cos θ + sin θ cos θ

}
dθ − γc

γ0

∫ 3π
2

π
2 +Ψ

cos θdθ

+

∫ 3π
2 +Ψ

3π
2

{(
−γc
γ0

+ 1

)
cos θ + sin θ cos θ

}
dθ +

γc
γ0

∫ 2π

3π
2 +Ψ

cos θdθ

]

=

√
3kT
4π

[
2
γc
γ0

∫ π
2

−π
2 +Ψ

cos θdθ + 2

∫ π
2 +Ψ

π
2

{(
γc
γ0
− 1

)
cos θ + sin θ cos θ

}
dθ

]

=

√
3kT
4π

[
2
γc
γ0

(1 + cosΨ) + 2

(
γc
γ0
− 1

)
(cosΨ− 1) + (cos2 Ψ− 1)

]
=

√
3kT
4π

(
4
γc
γ0

cosΨ + (1− cosΨ)2
)

(10)

=

√
3kT
π

(
γc
γ0

cosΨ + sin4
Ψ

2

)
となるので，式 (5.21)第 2式を得る．

上式 (10)に γc/γ0 = (1− cosΨ)/2を代入すると，G′′ = G(t)′′ を式 (5.20)へと書き換えられる．

5.3　多体系のシミュレーションとの比較

3体モデルは厳密に解ける簡単なモデルでありながら，粒子が結晶配置を保ったまま振動剪断を受ける多体

系の応答を定量的に再現できるという意味で教育的である．

結晶を組む多体粒子系のモデルとして，格子定数 lの三角格子上に配置された等サイズの円盤の集まりを考

え (図 24 (a))，数値シミュレーションを行う．境界効果を避けるために Lees-Edwards境界条件*26を採用し，

*26 歪がかかった系に対する空間的な周期境界条件．A. Lees and S. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972).
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図 27 様々な µd に対する貯蓄弾性率 G′ の γ0 依存性 図 28 様々な µd に対する損失弾性率 G′′ の γ0 依存性

バルクに剪断をかける SLLODと呼ばれるモデル［6.4節も見よ］*27で振動剪断を表現する．多体シミュレー

ションでは粘性力も含めて，接触力の法線成分と接線成分をそれぞれ

f
(n)
ij →

(
kNu

(n)
ij + ηnv

(n)
ij

)
, (v

(n)
ij = u̇

(n)
ij ) (5.23)

f
(t)
ij →min

(
|f̃ (t)ij |, µdf

(n,el)
ij

)
sgn(f̃

(t)
ij ), (f

(n,el)
ij = kNu

(n)
ij ) (5.24)

f̃
(t)
ij →

(
kTu

(t)
ij + ηtv

(t)
ij

)
(v

(t)
ij = u̇

(t)
ij ) (5.25)

とする．パラメータの値は

［粒子数］N = 64,
kT
kN

= 1.0, ε = 0.001, ηt = ηn =
√
mkN, ω = 0.0001

√
m

kN

と設定し，振動の Nc = 20サイクル目の 1周期で式 (3.47–48),(5.12)に基づき，G′, G′′ および P0 := P (θ =

0, γ0, µd)を計測する．

貯蓄弾性率 G′ の γ0 依存性を様々な摩擦係数 µd に対してプロットした結果を図 27に示す．曲線は 3体モ

デルの解析解 (5.17)を表しており，µd = 1での γ0 ≥ 0.003の場合を除いて，多体シミュレーションのデータ

点とよく合っている (フィッティングパラメータはない)．多体系のシミュレーションでは，γ0 < γc(µd)では

G′ で一定であり，γ0 が γc(µd)を超えると G′ は減少し，µd ≤ 0.001では G′/kN ≃ 0.4の 2つ目のプラトー

［横這いの水平線］に移行していることが見て取れる．さらに 2つ目の γ0 の臨界値を超えると再び G′ が減少

している．一方，3体モデルの解析解はこの第 2の G′ の低下を捉えられていない．これは［γ0 の増大に伴い

解析解の仮定］γ0 ≪ εが満たされなくなったためである．実際，3体モデルに対しても数値解を用いれば，定

性的には第 2の G′ の低下を再現できる．

次に損失弾性率 G′′ の γ0 依存性を様々な摩擦係数 µd に対してプロットした結果を，3 体モデルの解析解

(5.20)による理論曲線とともに図 28に示す．3体モデルの解析解は γ0 ≤ 10−3 でほぼ完全に多体シミュレー

ションの結果と一致する．ただし µd が比較的大きい場合における大きな γ0 (とりわけ µd = 1, γ0 > 10−2)

に対して，G′′ は解析解 (5.20)に反してゼロにならず増加に転じている．これは結晶構造が壊れて塑性変形が

生じたためだと想像される．

*27 D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2nd Ed. (Cambridge Univ. Press,

Cambridge, 2008).
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なお結晶を組まないアモルファス系に対して大きな γ0 では，粒子配置の組み換えによる塑性変形が本質的

となることから納得できるように，多体系の振舞いを単なる 3体モデルの改良で捉えることはできない．また

粒径が分散を持つために結晶を組まない系の理論解析は現時点では困難であるのに対し，粒子配置が結晶を

保ちながらも結合 (kT, kN)がランダムな系に対しては，第 7章で紹介するランダム行列理論が有効と考えら

れる．

5.4　応力歪曲線の固有モード解析による再現

本節ではランダムな粒子配置を持つアモルファス固体に剪断を加えた際の，剛性率 Gの歪 γ 依存性を調べ

る．［ここでも 5.1節で言及した剛性率に興味がある．］手法としては完全な理論的解析を諦め，井嶋等の論文

D. Ishima, K. Saitoh, M. Otsuki, and H. Hayakawa, Phys. Rev. E 107, 034904 (2023)

にならった固有モード解析を紹介する．

5.4.1　固有モード解析の序

［原著では多数の参考文献が引用されているが，本稿ではそれらをいちいち孫引かない．］

粉体，コロイド，泡，エマルジョンのような斥力相互作用をする分散粒子から成るアモルファス粒子系は，

ジャミング点より高密度で脆弱な固体として振舞う．そのような物質に歪 γ を加えると，剛性率 Gが歪に依

存しない線形領域が得られるものの，非線形領域では γ の増加に伴い Gは減少すること (ソフト化)が知られ

ている．また降伏点移転より上ではストレス雪崩等の塑性流動が生じる．［1.3.2項の図 4も見よ．］

摩擦のない粒子系から成るアモルファス固体では，粒子配置で決まる Hesse (ヘッセ)行列を用いた固有値

解析が剛性率の計算に広く用いられてきた．しかし従来の研究結果はシミュレーションによる実測値と必ずし

も一致していない．なお臨界歪 γc より僅かに小さい歪 γ に対して，Hesse行列の非ゼロの最小固有値が γ と

ともに減少することがストレス雪崩の予兆であるとする指摘がある．

一般に摩擦力は接触の履歴に依存するので，Hesse行列の固有値解析は摩擦のある現実の巨視的物体には適

用できないと考えられてきた．実際，例えばイスラエルのグループは Jacobi行列を用いた固有値解析に基づ

き，粒子間摩擦由来の振動不安定性があると予言している．

そこで本節では摩擦のある 2 次元粒子系に対して，歪を少し増すごとに十分に安定な配置に緩和させる

AQS (athermal quasi-static)プロトコルを採用し，接触点での滑りを無視できると仮定する．そのような系

では結局，Jacobi行列による固有値解析と Hesse行列による解析は完全に一致し，粒子配置さえ与えられれ

ば，ストレスと歪の複雑な関係式を完全に再現できることが判明する．また非線形ポテンシャルで粒子間相互

作用を記述する従来の研究の結果とは異なり，本節で見る調和ポテンシャルで相互作用する粒子系では，スト

レス雪崩の予兆はないことが分かった．

Hesse行列の固有値解析は有効であり，摩擦の有無は結果に本質的な差をもたらさないことが分かったこと

を踏まえ，5.4.3項で説明する理論解析では簡単のため摩擦のない粒子系を対象とする．

5.4.2　モデル

2次元平面に配置された N 個の摩擦のない円盤を考える．粒径 di (添字 iは粒子番号)には分散があり，そ

れ故に粒子系は結晶化しないとする．また質量密度は全粒子に共通であり，したがって粒子 iの質量は d 2
i に

比例するものとする．［例えば粒子はサイズにばらつきがあるものの，いずれも共通の材質からできていると
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想定すれば良い*28．］粒子 iの一般化座標
qi := ri (5.26)

を Descartes座標 ri := (xi, yi)
T に選び，また θi を粒子 iの回転角とすると，運動方程式は

mi
d2ri
dt2

=Fi, (5.27)

Ii
d2θi
dt2

=Ti. (5.28)

［摩擦のある場合には一般化座標 qi に回転角 θi を含める必要があるものの，摩擦がない場合には qi と ri の

区別は必要ない (教科書 p.81，l.1–3)．］ここで重力等の体積力を無視できる場合には，粒子 iに働く力は

Fi =
∑
j(̸=i)

fij −miηDṙi (5.29)

と書けるだろう (ドットは時間微分)．ただし ηD は背景流体との相対運動に起因する抵抗力の係数である．ま

た粒子 j が粒子 iに及ぼす力は接触力

fij = fN,ijΘ((dij/2)− |rij |) (5.30)

で表され，ここに dij := di+dj , rij := ri−rj である．ここでは kNをバネ定数，変位を ξN,ij := (dij/2)−|rij |，
法単位ベクトルを nij = rij/|rij |として，接触時の力を

fN,ij = kNξN,ijnij (5.31)

で与える．

［5.3節で紹介した］Lees-Edwards境界条件の下で，x方向の振動歪を実装する．粒子のランダムな状態か

ら等方的な圧縮を準静的にかけて，式 (5.27)に従い時間発展させつつ，歪をかける前の初期状態を生成する

生成する．次いで各粒子 iに微小歪 ∆γ による変位 (「アフィン変形」) ∆xi(∆γ) := ∆γ · yFBi (0)を加える．

ここで上付き添字 FBは力のバランス (force balance) Fi = 0の成り立った状態 (FB状態)を表す．5.4.3項

で示すように，FB状態はポテンシャルの極小状態に他ならない．アフィン変形を加えた後に系を FB状態ま

で緩和させることを繰り返して，歪を ∆γ ずつ増大させると，任意の歪 γ の FB状態を生成できる．

歪の増大に伴う塑性変形を排除するために，バックトラッキング法を用いる．すなわち歪を ∆γin だけ増大

させた後で塑性イベントが生じた場合，その試行を取り消し，増加量を 0.1∆γin に変更して改めて歪を増大さ

せる．なお塑性イベントが生じた場合，増加量を 0.01∆γin に変更する，といった試行を繰り返して塑性イベ

ントがなくなる歪の増加量を採用し，この手続きを歪の増加が与えられた目標 ∆γin に達するまで繰り返す．

ここで ζ = x, y として，rFB,ζi (γ)に対して非アフィン変形率

dr̊ζi (γ)

dγ
:= lim

∆γ→0

rFB,ζi (γ +∆γ)− rFB,ζi (γ)

∆γ
− δζxyFBi (γ) (5.32)

を導入する．［すなわち∆γ に伴う変位を∆xFBi = ∆γ · yFBi +∆x̊i, ∆y
FB
i = ∆ẙi と見る*29．以上が 5.4.1項

で言及した AQSである (教科書 p.80)．］

*28 教科書 5.3節では粒径が 2種類の粒子から成るアモルファス系の多体シミュレーションにも (半ば形式的に)言及されており，「ア
モルファス系の 2 種の粒子は質量密度が等しいとしよう」(p.73，l.2–3) とある．ここでも同一種類の粒子のバルクにおける質量
密度ではなく，個々の粒子そのものの質量密度のことを述べていると考えられる．

*29 しばらく空間位置を文字 x,y などで表すことはないので，単に rxi → xi, r
y
i → yi などと書いても表記上の問題は生じない．
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系を特徴付ける一般化座標をまとめて q(γ) := (q1(γ), · · · , qN (γ))T と書き，歪 γ での FB状態におけるそ

の値を qFB(γ)で表す．1つのサンプルの qFB(γ)に対して剪断応力は［式 (4.15)の対称化］

σ(qFB(γ)) = − 1

2L2

∑
i

∑
j(>i)

[
fxij(q

FB(γ))ryij(q
FB(γ)) + fyij(q

FB(γ))rxij(q
FB(γ))

]
(5.33)

で与えられる．

1つのサンプルに対する剛性率は

g :=
dσ(q(γ))

dγ

∣∣∣∣
q(γ)=qFB(γ)

(5.34)

で定義される．この右辺の微分の意味は

dσ(q(γ))

dγ

∣∣∣∣
q(γ)=qFB(γ)

= lim
∆γ→0

σ(qFB(γ +∆γ))− σ(qFB(γ))

∆γ
. (5.35)

様々な初期条件に応じたサンプルにわたるアンサンブル平均

G := ⟨g⟩ (5.36)

で剛性率を求める．

5.4.3　固有値解析

(1) Hesse行列

i, j を粒子番号，また α, β = x, y として，Hesse行列は行列要素

Hαβij :=
∂2δeij(q(γ))

∂rαi ∂r
β
j

∣∣∣∣∣
q(γ)=qFB(γ)

(5.37)

で定義される．ただし δeij は粒子配置の FB状態 {rFBi }からのズレ δri := ri − rFBi に付随する有効ポテン

シャル・エネルギー

δeij :=
kN
2
(δrij · nij)2 (5.38)

であり，ここに
δrij := δri − δrj . (5.39)

［上式 (5.38)は接触力 (5.30–31)に基づいており，したがって］粒子 iと j が接触していない場合には Hαβij = 0

と約束する．

式 (5.37)を行列要素に持つ Hesse行列は

H =

H11 · · · H1N

. . . . . . . . . . . . . . . .
HN1 · · · HNN

 (5.40)

の形をとり，ここで各ブロックは粒子対 i, j に関する 2× 2のサブ行列

Hij =

[
Hxxij Hxyij
Hyxij Hyyij

]
(5.41)

である．
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Hesse行列 Hの固有値 λn に属する (右)固有ベクトルを |Φn⟩と書くと，これらは固有方程式

H |Φn⟩ = λn |Φn⟩ (5.42)

を満たす．ところが Hesse行列 Hは実対称行列なので，固有値は実数であり，固有関数は実に選ぶことがで

き，さらに異なる固有値に属する固有関数は互いに直交する．すなわち左固有ベクトル ⟨Φn| (行ベクトル)を

導入すると，規格化された固有ベクトルは正規直交性 ⟨Φm|Φn⟩ = δmn を満たす．また安定性を考慮すると，

全ての固有値が非負である*30．以下では簡単のため Hesse行列の固有値に縮退はないと仮定する*31．

(2)固有モードに基づく剛性率の表式

次に固有値解析を用いて式 (5.36) の剛性率を決める方法を説明する．［大局的なポイントは剛性率の式

(5.33–34)における力が，後の式 (5.46)を通じて Hesse行列要素で表されることである．すると非アフィン変

形に伴う変位を与える歪微分 (5.48)や，非アフィン変形の剛性率への寄与 (5.53)が Hの固有値・固有ベクト

ルから計算できることになる．］

力のベクトル
|F (q(γ))⟩ := [F1(q(γ)),F2(q(γ)), · · · ,FN (q(γ))]T (5.43)

を導入する．FB状態では

|F (q(γ))⟩|q(γ)=qFB(γ) = |0⟩ ,
d |F (q(γ))⟩

dγ

∣∣∣∣
q(γ)=qFB(γ)

= |0⟩ (5.44)

が成り立つ (|0⟩はゼロ・ベクトル)．

ここで ∣∣∣∣dq̊dγ
⟩

:=

[
dr̊x1
dγ

,
dr̊y1
dγ

, · · · dr̊
x
N

dγ
,
dr̊yN
dγ

]T
(5.45)

を導入して式 (5.32)を用いると，力の歪微分はアフィン変形と非アフィン変形の寄与に分けて

d |F (q(γ))⟩
dγ

∣∣∣∣
q(γ)=qFB(γ)

= − |Ξ⟩+ H

∣∣∣∣dq̊dγ
⟩

(5.46)

と書くことができ［本稿次項で導出］，ここに

|Ξ⟩ :=
∑
j


Hxxj1 r

y
1j

Hxyj1 r
y
1j

...
HxxjNr

y
Nj

HxyjNr
y
Nj

 (5.47)

である．

式 (5.46)の左辺はゼロなので ∣∣∣∣dq̊dγ
⟩

=
∑
n

′ ⟨Φn|Ξ⟩
λn

|Φn⟩ (5.48)

*30 この性質は Lees-Edwards境界条件の下で剪断をかけても成り立つ．
*31 縮退がある場合にも同じ固有値に属する固有ベクトルを直交系に選べるため，縮退の有無によって本質的な違いは現れない．
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と書ける［本稿次項で補足］．ただし
∑
n
′ は分母の固有値 λn ̸= 0を満たす固有状態にわたる和である*32．塑

性変形があると固有値と固有関数は，したがって上式 (5.48)は不連続に変化する．

剛性率をアフィン変形の寄与 gA と非アフィン変形の寄与 gNA に分けて

g := gA + gNA (5.49)

と書くと，式 (5.33–34)より

gA :=
1

2L2

∑
i,j(i ̸=j)

ryij
[
ryijH

xx
ji + rxijH

yx
ji

]
, (5.50)

gNA :=
1

2L2

∑
i,j(i ̸=j)

 ∑
ζ=x,y

(
ryijH

xζ
ij + rxijH

yζ
ij

) dr̊ζij
dγ

 (5.51)

と同定される［本稿次項で補足］．ただし

dr̊βij
dγ

:=
dr̊βi
dγ
−

dr̊βj
dγ

(5.52)

を導入した．

式 (5.48)を代入すると，非アフィン変形に伴う剛性率 (5.51)は

gNA = − 1

L2

∑
n

′ ⟨Φn|Ξ⟩ ⟨Ξ|Φn⟩
λn

(5.53)

と書ける．またアフィン変形に伴う剛性率 (5.50)は

gA =
1

L2
⟨Y |Ξ⟩ (5.54)

と書くことができ，ここに
⟨Y | := [y1, 0, y2, 0, · · · , yN , 0] (5.55)

である．［上式 (5.53–54)を本稿次項で補足する．］

数値計算との比較には剛性率そのものよりもストレスを用いる方が便利である．その場合，理論的なストレ

ス σth(γ)は剛性率 (5.49)を用いて

σth(γ +∆γ) := σ(qFB(γ)) + g(γ)∆γ (5.56)

で与える．

5.4.3項について

■式 (5.46)の導出 便宜的に相互作用ポテンシャルの粒子対にわたる和を V とおくと，

dFαi
dγ

∣∣∣∣
FB

= − d

dγ

∂V

∂rαi

∣∣∣∣
FB

= −
∑
j,β

drβj
dγ

∂2V

∂rαi ∂r
β
j

∣∣∣∣∣
FB

= −
∑
j,β

drβj
dγ

∂2δeij

∂rαi ∂r
β
j

∣∣∣∣∣
FB

= −
∑
j,β

drβj
dγ

∣∣∣∣∣
FB

Hαβij .

*32 実際の計算では非ゼロであっても λn/kN ≤ 10−12 以下の固有モードは無視する．

71



ここで微分
drβj
dγ

∣∣∣∣
FB

は式 (5.35)と同様に定義していることを踏まえて，式 (5.32):
drβj
dγ

∣∣∣∣
FB

= δβx(ryj )
FB +

dr̊βj
dγ

を代入すると，
dFαi
dγ

∣∣∣∣
FB

= −
∑
j

Hαxij (r
y
j )

FB −
∑
j,β

Hαβij
dr̊βj
dγ

を得る．ところで FB状態の粒子配置に任意の一様な並進 δrβj = δaβ を施しても，粒子に働く力は Fαi = 0に

留まるので，Hesse行列に対する条件

0 = (δFαi )
FB = −

∑
j,β

δaβ · Hαβij , ∴
∑
j

Hαβij = 0

が見出される．すると上式第 1項で −(ryj )FB → (ryij)
FB と置き換えたときのおつりはゼロなので，

(0 =)
dFαi
dγ

∣∣∣∣
FB

= +
∑
j

Hxαji (r
y
ij)

FB −
∑
j,β

Hαβij
dr̊βj
dγ

(11)

を得る．したがって式 (5.46) は右辺全体の符号が逆と考えられる*33．また |Ξ⟩ の式 (5.47) における ryij は

FB状態で評価される．

■式 (5.48)について 式 (5.46)に左から ⟨Φn|を掛けると，

⟨Φn|Ξ⟩ =
⟨
Φn

∣∣∣∣H ∣∣∣∣ dq̊dγ
⟩

= λn

⟨
Φn

∣∣∣∣ dq̊dγ
⟩

を得る．これは「非アフィン変形を Hの固有関数で展開し」(教科書 p.83，l.11)た関係

|Ξ⟩ =
∑
m

λm |Φm⟩
⟨
Φm

∣∣∣∣ dq̊dγ
⟩

と等価である．すると固有値 λn ̸= 0の固有状態 |Φn⟩に関する
∣∣∣ dq̊dγ⟩の展開係数は ⟨Φn ∣∣∣ dq̊

dγ

⟩
= ⟨Φn|ξ⟩

λn
なの

で，式 (5.48)を得る．

ただしこの導き方から，式 (5.48)にはゼロ固有値に属する固有状態を加える任意性があるはずである．もっ

とも式 (5.48)の段落 (教科書 p.83)にあるように塑性変形の有無を判定する指標として式 (5.48)を用いるだ

けならば，この不定性は問題にならないと考えられる．しかし 5.4.4項 (教科書 p.85，l.12–14)では塑性変形

を (i)ストレスの減少 σ(γ) − σ(γ −∆γ) < 0または (ii)剛性率の減少 G(γ −∆γ) − G(γ) > 1.0 × 10−2kN

のいずれかが満たされる場合として判定している．また 5.4.4項では式 (5.48)のベクトル |dq̊/dγ⟩ そのもの
を主要な結果として描画している．さらに gNA の式 (5.53)には和の範囲が直接影響する．

そこで我々の目標はあくまで FB状態を保持しつつ，系の歪を次第に増加させることであったことを思い出

そう．歪はエネルギー変化 (3.15)をもたらし，したがって対偶をとると，系のエネルギー変化を伴わない変位

は歪の増大に寄与しない．さて，一般に粒子の微小変位 δrαi に伴う系のエネルギー変化は，Hesse行列 (5.37)

の 2次形式

δe =
1

2

∑
i,j,α,β

Hαβij δr
α
i δr

β
j

で表される．(FB状態を考えているので変位の 1次の項は現れない．) しかるに Hのゼロ固有値に対応する

固有ベクトル vβj は固有方程式 (5.42):
∑
j,β H

αβ
ij v

β
j = 0を満たす．このときこの固有ベクトルに比例する変位

*33 式 (5.46)全体をゼロとおいて得られる後の式 (5.48)には，符号の違いは影響しない．剛性率の式 (5.50–51)には影響する．
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δrβj ∼ vβj は系のエネルギー変化 δeをゼロにするので，変位を与える式 (5.48)において我々の興味から除外

できる．

■gA, gNA の式 (5.50–51)について 歪微分 (5.46)の符号を上式 (11)のように修正する．微小な歪 γ に対し

て力は歪微分 (11)の γ 倍

Fαi =
∑
j

fαij , fαij = γ

Hxαji r
y
ij −

∑
β

Hαβij
dr̊βj
dγ


で与えられる (以降，ラベル FBは適宜省略)．これを応力 (5.33):

σ = − 1

2 · 2L2

∑
i,j(i̸=j)

(fxijr
y
ij + fyijr

x
ij)

に代入すると，剛性率 (5.34)は

g =
dσ

dγ

∣∣∣∣
FB

= − 1

4L2

∑
i,j

ryij(Hxxji ryij + Hxyji r
x
ij)−

∑
β

(Hxβij r
y
ij + Hyβij r

x
ij)

dr̊βj
dγ


と表される．よって式 (5.50–51)全体の数係数を修正して

gA :=− 1

4L2

∑
i,j

ryij(H
xx
ji r

y
ij + Hyxji r

x
ij), (5.50′)

gNA := +
1

4L2

∑
i,j

∑
β

(Hxβij r
y
ij + Hyβij r

x
ij)

dr̊βj
dγ

= − 1

8L2

∑
i,j

∑
β

(Hxβij r
y
ij + Hyβij r

x
ij)

dr̊βij
dγ

(5.51′)

と同定できる．ただし式 (5.50′)第 2項では Hesse行列の対称性 Hxyji = Hyxji を考慮した．また式 (5.51′)第 2

の等号では因子 (Hxβij r
y
ij +Hyβij r

x
ij)が添字 i, j に関して反対称なので，

dr̊βij
dγ =

dr̊βi
dγ −

dr̊βj
dγ の 2項の寄与が等し

いことに注意した．

■gA, gNA の式 (5.53–54)について 式 (5.50′),(5.51′)に 2つの項が現れるのは，ストレスをあらかじめ x, y

に関して対称化した形 (5.33) に書いたことに起因している．この措置を施さなければ，式 (5.50′),(5.51′) の

第 1項 (の 2倍)のみが得られる．そこで式 (5.51′)第 2辺の第 1項の因子は

∑
i,ζ

∑
j

Hxζji r
y
ij

 dr̊ζi
dγ

=

⟨
Ξ

∣∣∣∣ dq̊dγ
⟩

=
∑
n

′ ⟨Φn|Ξ⟩ ⟨Ξ|Φn⟩
λn

のように，式 (5.53)の形へと書き換えられる．また式 (5.50′)第 1項の因子は，式 (5.54)の形∑
i,j

ryij · H
xx
ji r

y
ij =

∑
i,j

(yi − yj)Hxxji r
y
ij = 2

∑
i,j

Hxxji r
y
ij · y

i = ⟨Y |Ξ⟩

に書き換えられる．

5.4.4　計算結果と議論

ここでは摩擦 (したがって回転)のある粒子系に対して，固有値解析と数値シミュレーションの結果を比較

する．
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図 29 歪 0 ≤ γ ≤ 0.5に対する 1サンプルの応力歪曲線 (粒子数 N = 128)．実線は固有値解析に基づく

理論曲線，●はシミュレーション結果を表す．［本稿では原論文から図を採った．］

まず応力歪曲線の典型的なサンプルを図 29に示す．ここから塑性変形が多数あるような γ が大きい領域に

おいても，固有値解析とシミュレーションで求めたストレスはほぼ一致していることが見て取れる．ただし塑

性変形の起きる降伏点 γ = γc では系が不安定であり，固有値解析の式 (5.56)を適用できないため，γc で理論

曲線は途切れている．

次に降伏点近傍での最小固有値のプロットを図 30 (a)に示す．ここから最小固有値は降伏点で予兆なく突

然不連続に降下していることが読み取れる．これはストレス降下の降伏減少の予兆を非ゼロの最小固有値の振

舞いから推定できるとする，非線形ポテンシャルで相互作用する系に対する従来の報告とは異なっている［本

研究では調和ポテンシャル (5.38)を仮定］．剛性率もまた図 30 (b)のように予兆なく突然不連続に変化して

おり，先行研究で報告されている降伏点付近の振舞い g− greg ∼ −(γc− γ)−1/2 (ただし greg は「正則な部分」

(教科書 p.77，l.4–5))は，ここでは見られない．したがって地震をはじめとするストレス雪崩に対して，系に

よっては塑性現象の予兆が得られない場合もあり得るということが，教訓として言える．

ここで降伏点に達する (a)直前の歪 γc− と (b)直後の歪 γc+ での，最小固有値に対応する固有ベクトルをそ

れぞれ順に図 31 (a),(b)に示す．［固有ベクトルの 2N 個の成分は N 粒子の各々に対して 2次元のベクトル

を定義する．これは式 (5.48)より非アフィン変形に伴う粒子の変位の主要項と解釈できる．］ただし Rln,i は

対応する固有ベクトルの回転成分を表す．［粉体系が連続体として］時計回りと反時計回りに回転している領

域が共存しており，各領域内では粒子は協同的に動いていることが見て取れる．

図 32は γ = γc+ における |dq̊/dγ⟩を，(a)固有値解析と (b)シミュレーションに対して示している (l/dは

粒子回転に関わる成分)．それらの結果は区別が付かず，ここから固有モード解析の有効性が裏付けられる．

［前述のように］降伏点 γc での塑性変形は固有値解析で捉えられない．そこで降伏点を挟んでの非アフィン

変形を

∆q̊|c :=


∆q̊1|c
∆q̊2|c

...
∆q̊N |c

 , ∆q̊i|c :=

rFB,xi (γc+)− rFB,xi (γc−)−∆γrFB,yi (γc−)

rFB,yi (γc+)− rFB,yi (γc−)
lFBi (γc+)− lFBi (γc−)

 (5.57–58)

で求め，図 33にプロットする．ただし li := diθi/2であり，θi は粒子 iの回転角を表す．図 33から
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図 30 降伏点近傍 0.3408 ≤ γ ≤ 0.3413での (a)最小固有値 λmin の振舞い，および (b)固有値解析から

得られた剛性率 g (四角)とシミュレーションによって得られた剛性率 (丸)の振舞いのプロット．粒子数は

N = 128．［本稿では教科書から図を採った．］

図 31 (a) γc− と (b) γc+ での最小固有値に対応する固有ベクトルの空間プロット．ここで Rl
n,i は対応

する固有ベクトルの回転成分を表す．［本稿では原論文から図を採った．］
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図 32 γ = γc+ での |dq̊/dγ⟩のプロット．(a)は固有値解析によるもので (b)はシミュレーション解析に

基づく図である．［本稿では原論文から図を採った．］

(i) 粒子間摩擦の影響で粒子は回転しながら動いていること

(ii) 協同して動いている粒子から成る 4つの領域があり，3.8節で説明した四重極構造が実現していること

が見て取れる．

最後にサンプル平均から求めた剛性率 G = ⟨g⟩を図 34に示す．ここでは降伏点のデータを除去してあるた

め，剛性率 Gの γ 依存性に不連続性はなくなっているものの，接触点や粒子配置の変化に伴い Gも複雑な変

化を示している．またシミュレーションと固有値解析で求めた剛性率はほぼ完全に一致している．

5.4.5　固有モード解析の結論

Hesse行列の固有値解析は降伏点には適用できないものの，調和ポテンシャルで相互作用する粒子系に対し

ては，粒子配置が安定でありさえすれば，塑性流動の起きる大きな歪においても，また粒子間摩擦がある場合

にも，剪断歪を掛けた際の剛性率の計算に有効であることが示された．

1. 粒子間摩擦は履歴に依存し，単純な固有値解析を無効にすると言われてきた．

そこで今後この履歴依存性の有無を明らかにする必要がある．

2. 調和ポテンシャル系の固有値解析では，降伏現象の予兆が見られなかった．このため必ずしも
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図 33 降伏点を挟む非アフィン変位∆q̊|c のシミュレーションに基づくプロット．［本稿では原論文から図を採った．］

図 34 固有値解析で求めた平均化された剛性率 G (線)とシミュレーションによるもの (●)の比較図．エ

ラーバーは標準偏差を表す．［本稿では教科書から図を採った．］

全ての系に対してストレス雪崩の予兆が得られる保証はないことを肝に銘じる必要がある．

3. 粒子配置さえ与えられれば固有値解析により剛性率を再現できるものの，

実現する粒子配置を理論的に理解することは今後の大きな課題である．

なお図 33 で示した四重極的な粒子の動きは純粋剪断の特徴であるにも関わらず，［降伏点を挟んでいるた

め］固有値解析では捉えられない．そこで四重極ありきで塑性変形の理論を構成することが考えられる．例え

ば文献

R. Dasgupta, G. H. Hentschel, and I. Procaccia, Phys. Rev. E 87, 022810 (2013)

では図 10のように対角方向に傾いた多数の四重極が相互作用する場合，それらが一定の高さ y で x軸に平行

に並んだ配置が安定になることを示した．この結果は剪断により x軸に平行な亀裂が生じて，上下に分離する

という日常経験と整合している．さらに同論文では 1次元的に並んだ四重極が充分多くあり，その密度 n (領
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域のサイズで無次元化する)を定義できる場合には，歪 γ での歪エネルギーが

E ∼
(
1− γ

γY

)
n−Bn3 + Cn5 (5.59)

と書けることを予言している．ただし B,C は正定数であり，γY は降伏歪を表す．すると

• γ < γY のとき ∂E/∂n|n→0 は正なので，四重極のない n = 0が安定となる．

• γ が γY を超えた瞬間，∂E/∂n|n→0 は負となり，安定な nは［γ = γY での式 (5.59)の極小を与える］

n =
√
3B/5C へと不連続に飛ぶ．

この理論の定性的な正しさは確認されているものの，その定量的な正しさと有効性については未だ盛んに議論

されている．

5.5　振動剪断系のモード解析

前節では微小歪を加え続けた場合に非線形領域まで固有モード解析が有効であることを示した．本節では線

形応答領域では，同様の手法で振動剪断での G′, G′′ を求められることを示す．

Y. Hara, H. Mizuno, and A. Ikeda, Soft Matter 19, 6046 (2023).

簡単のため粒子間摩擦は無視する．ただし［共鳴の起こり得る強制］振動を記述するため，ここでは速度に

比例する抵抗を考慮する．ここで歪を［これまでと同様，単純剪断に対する非対称テンソル］γαβ = γδαxδβy

で与える．平衡位置からの変位を |u⟩，粒子 i(= 1, · · · , N)に働く外力 fi をまとめて F := {fi}Ni=1，その歪

微分を |Ξ⟩ := {Ξi}Ni=1 = ∂F /∂γ と書こう［Ξ→ |Ξ⟩と改め，その定義から負号を除いた*34］．外力を歪で線

形化し，また加速度項を無視すると，運動方程式は

C |u̇⟩+M |u⟩ = γ |Ξ⟩ (5.60)

と書ける．ただしドットは周期外場［外力］の角振動数 ω0 で無次元化した時間 τ := ω0t に関する微分を表

す．またMはポテンシャル ϕの Hesse行列であり，粒子対 i, j に関するブロック行列Mij の行列要素

Mαβ
ij :=

∂2ϕ

∂ui,α∂uj,β
(5.61)

で定義される．

［外力 F ≃ γ |Ξ⟩を周期的と仮定したことに整合して］歪は周期性 γ(t+ (2π/ω0)) = γ(t)を満たすとする．

そこで式 (5.60)の Fourier変換をとると

(iωC+M) |û(ω)⟩ = γ̂(ω) |Ξ̂(ω)⟩ (5.62)

を得る (量 A(t)の Fourier変換を Â(ω)と表記)．Green関数テンソル G(ω) := (iωC+M)−1 を導入すると，

上式 (5.62)は
|û(ω)⟩ = γ̂(ω)G(ω) |Ξ̂(ω)⟩ (5.63)

と書き換えられる．

*34 実際このとき (合力) = γ |Ξ⟩ − C |u̇⟩ −M |u⟩となるので，式 (5.60)を得る．また式 (5.64)の箇所で定義される Ξ := ∂F /∂←→γ
とも対応がとれる．
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ここで一般の歪 γαβ に伴う応力を，アフィン変形の寄与 (Hookeの弾性則［式 (2.39)］)と非アフィン変形

の寄与に分けて

σαβ(t) = Cαβδζ,∞γδζ(t)−
1

V
⟨Ξαβ |u(t)⟩ (5.64)

と書こう．ここに |Ξαβ⟩は ∂F ι/∂γαβ を第 ι(= 1, · · · , 2N)成分に持つベクトルであり，また V は系の体積

である．［分母の V は次元解析から納得でき，また巨視的な外力に関する量 Ξαβ を局所的な示強変数にする

働きを担っていると考えられる．］上式 (5.64)に式 (5.63)を代入すると，

σ̂αβ(ω) =Cαβδζ(ω)γ̂δζ(ω), (5.65)

with Cαβδζ(ω) :=Cαβδζ,∞ −
1

V
⟨Ξαβ |G(ω)|Ξδζ⟩ (5.66)

が得られる［本稿次節を見よ］．したがって Green関数テンソル G(ω)が決まればレオロジーが決まる．

以下では再び摩擦のない粒子系を考え，固有値解析を行う．摩擦のない粒子系では 5.4.3項 (1)で説明した

ようにMは実対称行列であり，固有値は正の実数である［ゼロ固有値を除外した］．したがって固有方程式を

M |φ(ωk)⟩ = ω 2
k C |φ(ωk)⟩ (5.67)

と書ける．［上式 (5.67)は右辺における抵抗行列 Cを対角行列とする仮定に依拠していると考えられる*35．］

ここで M̃ := C−1/2MC−1/2 および |φ̃(ωk)⟩ := C1/2 |φ(ωk)⟩ を導入して，固有値が ω 2
k Cααii の代わりに単に

ω 2
k となる形

M̃ |φ̃(ωk)⟩ = ω 2
k |φ̃(ωk)⟩ (5.68)

に固有方程式を書き変えられる．［多自由度の系に対する基準振動の理論との対応から，］ωk を固有振動数と

解釈する．ただし［上式 (5.67)におけるMと Cは運動方程式 (5.60)より次元が等しいので］，固有振動数 ωk

もまた ω0 で無次元化されていると考える．M は［対称行列なので直交行列］E = (|φ(ω1)⟩ , · · · , |φ(ωdN )⟩)
(dは空間の次元) を用いて Ω := ETME = diag(ω 2

1 , · · · , ω 2
dN )と対角化できる［本稿次節で補足］．すると

式 (5.62)は

(Ω+ iω1)E−1 |û(ω)⟩ = ETγ̂αβ(ω) |Ξ̂αβ(ω)⟩ , (5.69)

∴ |û(ω)⟩ = E(Ω+ iω1)−1ETγ̂αβ(ω) |Ξ̂αβ(ω)⟩ (5.70)

と書き換えられる［本稿次節で補足］．ただし 1 := (δαβ)は単位行列である．したがって［これを式 (5.63)と

比較すると］，Green関数テンソルは

G(ω) = E(Ω+ iω1)−1ET =
∑
k

C−1/2 |φ̃(ωk)⟩ ⟨φ̃(ωk)|C−1/2

ω 2
k + iω

(5.71)

と同定される［最右辺は基底 |φ̃(ωk)⟩に関する展開］*36．ここで状態密度を

D(ω) = 1

V

∑
k

δ(ω − ωk) (5.72)

*35 実際 Cを対角行列と仮定していることは，「各粒子に働く抵抗が対角要素に現れるとする」(教科書 p.92，l.10)という記述から示
唆される．対角行列 Cに対してはすぐ後の C±1/2 の意味は明白である．

*36 振動数 ω, ωk は ω0 で無次元化されているため，分母の 2項 ω と ω 2
k の次数が異なることは問題ない (式 (5.73)も同様)．
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で導入すると*37，式 (5.66)の第 2項は

1

V
⟨Ξαβ |G(ω)|Ξδζ⟩ =

∫ ∞

0

dω′D(ω′)Γαβδζ(ω
′)

ω′2 + iω
, (5.73)

with Γαβδζ(ω
′) := ⟨Ξαβ |C−1/2|φ̃(ω′)⟩ ⟨φ̃(ω′)|C−1/2|Ξδζ⟩

と書ける［右辺で ρ(ω′)を D(ω′)に修正した*38］．このように固有関数と固有値が分かれば Green関数テン

ソルが，したがって［3.6節と同様に］貯蓄弾性率 G′ と損失弾性率 G′′ が分かる．

一般に固有値を求めることに比べると，固有関数を求めることは困難である．そこで固有関数の助けを借り

ずに，近似的に Green関数テンソルを求めることに興味が持たれる．実際，冒頭に挙げた論文をはじめとす

る研究では δ = x, ζ = yとした際に，Γを固有関数に依存しない定数として Γαβxy ≈ Γδαβ と近似しても数値

的に良い結果が得られることが示唆されている．また技術的にはコンプライアンス 1/G∗ を計算した方が精度

が良いようである．もし実際にこの近似が妥当であるならば，第 7章で紹介する理論から求めた状態密度と合

わせると，粒子配置の情報を“カンニング”することなく複素剛性率の近似値を計算できることになる．

5.5節について

■構成方程式の Fourier変換 (5.65–66)について 式 (5.62–63)では歪微分 |Ξ⟩の Fourier変換 |Ξ̂(ω)⟩を定義
した．しかしここでは外力 F ≃ γ |Ξ⟩の周期性は歪 γ が担い，|Ξ⟩は時間依存性を持たないと仮定しよう．ま
た一般の歪 γαβ に対して |Ξδζ⟩ = ∂F /∂γδζ を定義したことを踏まえ，γδζ と γζδ を独立に扱い F = γδζ |Ξδζ⟩
と書こう．すると式 (5.63)は

|û(ω)⟩ = γ̂δζ(ω)G(ω) |Ξδζ⟩

に置き換わる．これを代入すると，歪-応力関係式 (5.64)の Fourier変換は

σ̂αβ(ω) =Cαβδζ,∞γ̂δζ(ω)−
1

V
⟨Ξαβ |û(ω)⟩

=

(
Cαβδζ,∞ −

1

V
⟨Ξαβ |G(ω)|Ξδζ⟩

)
γ̂δζ(ω)

となるので，式 (5.65–66)を得る．

■対角化 Ω = ETME (式 (5.68) の直後) について 引き続き C が対角行列であることを仮定すれば，M

と同様に M̃ := C−1/2MC−1/2 もまた対称行列である．したがって固有方程式 (5.68) に基づき，直交行列

Ẽ := (|φ̃(ω1)⟩ , · · · , |φ̃(ωdN )⟩)を用いて

diag(ω 2
1 , · · · , ω 2

dN ) = ẼTM̃Ẽ = ẼT(C−1/2MC−1/2)Ẽ = ETME =: Ω

と対角化できる．ただし第 3の等号では定義より C−1/2Ẽ = Eであり，したがって再び C−1/2 が対角行列で

あることとより ET = ẼTC−1/2 となることに注意した．上式から M̃の対角化 ΩはMの対角化でもあること

が見て取れる．

*37 また固有値 λk = ω 2
k に関する分布 ρ(λ)を ρ(λ)dλ = D(ω)dω，すなわち D(ω) = 2ωρ(λ = ω2)で導入する．

*38 ここで左辺の 1/V を状態密度の定義 (5.72)に吸収させたことになる．
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■式 (5.69)について 固有方程式 (5.67)の式 (5.68)への書き換えに対応して，簡単のため C = 1とおいてい

ると考えられる*39．この下で再び式 (5.62)を，一般の歪 γαβ に対して

γ̂αβ(ω) |Ξ̂αβ(ω)⟩ = (iω1+M) |û(ω)⟩ = (iω1+ EΩET) |û(ω)⟩

と修正する．ただしここでは |Ξαβ⟩の時間依存性を仮定・考慮し，Fourier変換 |Ξ̂αβ(ω)⟩を定義した．上式
の両辺に左から ET = E−1 を掛けると，式 (5.69)を得る．

■固有値分布 ρ(λ) (教科書 p.94脚注 10)について 関係 ρ(λ)dλ = D(ω)dω から期待されるように，λ = ω2

に関する分布 ρ(λ)もまた式 (5.72)と類似の式で表される．実際，

1

V

∑
k

δ(λ− λk) =
1

V

∑
k

δ(ω2 − ω 2
k ) =

1

V

∑
k

1

2ωk
δ(ω − ωk) =

1

2ω
D(ω) = ρ(λ).

5.6　付録：5.2.2項の詳細な計算

本節では 5.2.2項で紹介した 3体モデルの解析の詳細をまとめる．歪振幅 γ0 ≪ 1の場合に，剪断応力の接

線・法線成分と圧力を計算しよう．

note 連続体物理の常として，因果律に即して力から運動を説明することよりも，連続体の適当なモデルに

基づき，与えられた運動 (ここでは式 (5.2–4))に対して応力を計算することに興味が持たれる．

粒子配置 (5.2–4)に対して，相対位置 rij(t) := ri(t)− rj(t)は

r12(θ(t)) =

(√
3γ(θ(t)) + 1

2
l,

√
3l

2

)
, (5.74)

r13(θ(t)) =

(√
3γ(θ(t))− 1

2
l,

√
3l

2

)
, (5.75)

r23(θ(t)) =(−l, 0) (5.76)

である．すると変位 u
(n)
ij = d− rij は

u
(n)
12 (t) =εd−

√
3

4
lγ(θ(t)) +O(γ 2

0 ), (5.77)

u
(n)
13 (t) =εd+

√
3

4
lγ(θ(t)) +O(γ 2

0 ), (5.78)

u
(n)
23 (t) =εd (5.79)

となるので［本稿次節で確認］，接触力の法線成分 (5.7):f
(n)
ij = kNu

(n)
ij は

f
(n)
12 =kN

(
εd−

√
3

4
γ(θ)l

)
+O(γ 2

0 ), (5.80)

f
(n)
13 =kN

(
εd+

√
3

4
γ(θ)l

)
+O(γ 2

0 ), (5.81)

f
(n)
23 =kNεd (5.82)

*39 しかしながら式 (5.69) 以降の Ω = ETME などを，一貫して Ω = ẼTM̃Ẽ からチルダを省いた量と見なす必要はない．実際，式
(5.71)最右辺の分子はチルダのない量 E,ET の，基底 |φ̃(ωk)⟩に関する展開となっている．
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で与えられる［式 (5.81)第 2項の符号を修正した］．

次に相対速度 vij(t) = ṙij(t)は，式 (5.74–76)の時間微分

v12(t) =

(√
3γ̇(θ(t))l

2
, 0

)
, (5.83)

v13(t) =

(√
3γ̇(θ(t))l

2
, 0

)
, (5.84)

v23(t) = (0, 0) (5.85)

で与えられ，ここに γ̇ := dγ/dtは歪速度 (剪断率)の意味を持つ．また接単位ベクトル tij = (−yij , xij)/rij
は

t12(t) =

(
−
√
3l

2
,

√
3γ(θ(t)) + 1

2
l

)
/|r12|, (5.86)

t13(t) =

(
−
√
3l

2
,

√
3γ(θ(t))− 1

2
l

)
/|r13|, (5.87)

t23(t) =(0,−1) (5.88)

なので，速度の接線成分 v
(t)
ij := vij · tij は

v
(t)
12 (t) =−

3

4
lγ̇(θ(t)) +O(γ 2

0 ), (5.89)

v
(t)
13 (t) =−

3

4
lγ̇(θ(t)) +O(γ 2

0 ), (5.90)

v
(t)
23 (t) =0 (5.91)

と求まる［本稿次節で確認］．粘着接触では変位は u
(t)
ij (t) = −

∫ t
0
dt′v

(t)
ij (t

′)と表されるので，

u
(t)
12 (t) =u

(t)
13 (t) =

3

4
lγ(θ(t)) +O(γ 2

0 ), (5.92)

u
(t)
23 (t) =0 (5.93)

を得る［本稿次節で補足］．これを (粘着接触での)接触力の接線成分 f
(t)
ij = kTu

(t)
ij に代入すると，

f
(t)
12 (t) =u

(t)
13 (t) =

3

4
kTγ(θ(t))l +O(γ 2

0 ), (5.94)

f
(t)
23 (t) =0 (5.95)

を得る．粘着から滑りへの転移が生じない条件は，γ = γ0 で f
(t)
12 < µdf

(n)
12 となることである．仮定 γ0 ≪ ε

の下で式 (5.80),(5.94)はそれぞれ f
(n)
12 ≃ kNεd, f

(t)
12 ≃ 3

4kTγ0lとなるので，この条件は

γ0 < γc :=
4µdkNε

3kT
: (5.15)

と書き換えられる［ε≪ 1も仮定しているので d/l ≃ 1とした］．
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他方で γ0 > γc の場合にはサイクルに滑り接触を含む過程が実現する．滑り接触では u
(t)
ij は一定と見なさ

れる［5.2.1項のノート参照*40］．このとき変位 u
(t)
ij は

u
(t)
12 =



µdkNεl

kT

(
0 ≤ θ < π

2

)
µdkNεl

kT
+

3l(γ(θ)− γ0)
4

(π
2
≤ θ < π

2
+ Ψ

)
−µdkNεl

kT

(
π

2
+ Ψ ≤ θ < 3π

2

)
−µdkNεl

kT
+

3l(γ(θ) + γ0)

4

(
3π

2
≤ θ < 3π

2
+ Ψ

)
µdkNεl

kT

(
3π

2
+ Ψ ≤ θ < 2π

)
(5.96)

u
(t)
13 =u

(t)
12 (5.97)

u
(t)
23 =0 (5.98)

で与えられる［本稿次節で補足］．ここで Ψは

− µdkNεl

kT
−

3l(γ
(
π
2 +Ψ

)
− γ0)

4
=
µdkNεl

kT
(5.99)

の解

Ψ = cos−1

(
1− 2γc

γ0

)
(5.100)

で与えられる．変位 (5.96–98)を f
(t)
ij = kTu

(t)
ij に代入すると，接触力成分は

f
(t)
12 =



µdkNεl
(
0 ≤ θ < π

2

)
µdkNεl +

3kTl(γ(θ)− γ0)
4

(π
2
≤ θ < π

2
+ Ψ

)
−µdkNεl

(
π

2
+ Ψ ≤ θ < 3π

2

)
−µdkNεl +

3lkT(γ(θ)− γ0)
4

(
3π

2
≤ θ < 3π

2
+ Ψ

)
µdkNεl

(
3π

2
+ Ψ ≤ θ < 2π

)
(5.101)

f
(t)
13 =f

(t)
12 (5.102)

f
(t)
23 =0 (5.103)

となる．［教科書の式 (5.101)を逆符号に修正した*41．］

*40 滑り接触の場合も含めて常に f
(t)
ij = kTu

(t)
ij が成り立つように u

(t)
ij を定義したため，この u

(t)
ij に対して後の f

(t)
ij の式 (5.10)が

成り立つ．
*41 実際，例えば粒子 1が +x向きに，粒子 2が −x向きに変位する 0 ≤ θ < π

2
の間に，粒子 1が粒子 2から受ける力の x成分は

負と考えるのが自然である．しかるに接単位ベクトル t12 の x成分は負なので (式 (5.86))，接線成分 f
(t)
12 は正のはずである．ま

た節末で見るように，このように修正して初めて σ(t) の式 (5.16)が導かれる．
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力の法線成分のストレスへの寄与 (5.10)は

σ(n) =σ
(n)
12 + σ

(n)
13 , (5.104)

σ
(n)
12 =− 1

A

x12y12
r12

f
(n)
12 , (5.105)

σ
(n)
13 =− 1

A

x13y13
r13

f
(n)
13 (5.106)

で与えられ，ここに相対位置ベクトル成分 (5.74–75) と接触力成分 (5.80–81) を代入すると式 (5.13):σ(n) =
√
3kNγ(θ)/4を得る［本稿次節を参照］．

力の接線成分のストレスへの寄与 (5.11)は

σ(t) =σ
(t)
12 + σ

(t)
13 , (5.107)

σ
(t)
12 =− 1

2A

x 2
12 − y 2

12

r12
f
(t)
12 , (5.108)

σ
(t)
13 =− 1

2A

x 2
13 − y 2

13

r13
f
(t)
12 (5.109)

で与えられる．［常に f
(t)
23 = 0, ∴ σ

(t)
23 = 0および f

(t)
12 = f

(t)
13 であることに注意した．］ここに相対位置ベクト

ル (5.74–75)と，粘着状態 γ0 < γcでの接触力成分 f
(t)
12 の式 (5.94)を代入すると式 (5.14):σ(t) =

√
3kTγ(θ)/4

が得られ，代わりに滑り状態 γ0 ≥ γc での f
(t)
12 の式 (5.101)用いると σ(t) の式 (5.16)が得られる［本稿次節

を参照］．

式 (5.12)の圧力 P は 3体モデルでは

P =P12 + P13 + P23, (5.110)

Pij =
1

2A
rijf

(n)
ij (5.111)

と書ける［本稿次節を参照］．ここに相対位置ベクトル (5.74–76)の大きさと接触力成分 (5.80–82)を代入し

γ → 0とすると，式 (5.22):P =
√
3kNεを得る［本稿次節を参照］．なお圧力 (5.12)は一見すると接触ペアの

数に伴い増大するように見えるものの，実際にはそれに応じで分母の面積 Aが増大するので，圧力の示強性

が保証される．

5.6節について

■変位 u
(n)
ij の式 (5.77–78)について 粒子対 (i, j) = (1, 2), (1, 3)に対してそれぞれ順に複号の上側と下側を

採ることにすると，相対位置ベクトル (5.74–75)の大きさは

rij = l

√√√√(√3γ ± 1

2

)2

+

(√
3

2

)2

= l

√
1±
√
3

2
γ +O(γ 2

0 ) = l

(
1±
√
3

4
γ

)
+O(γ 2

0 ) (12)

なので，

u
(n)
ij := d− rij = d− l ∓

√
3

4
γl +O(γ 2

0 ).

5.2.1項で導入した圧縮歪 ε := 1− l/dを用いて，最右辺において d− l = εdと書き換えると式 (5.77–78)を

得る．
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■相対速度の接線成分 (5.89–90)について 粒子対 (i, j) = (1, 2), (1, 3)に対して相対速度 (5.83–84)と接単

位ベクトル (5.86–87)の内積は

v
(t)
ij := vij · tij = −

3

4
γ̇
l2

rij

であり，最右辺は既に γ0 の 1次の微小量 γ̇ に比例している．よって分母の rij を l に置き換えたときの誤差

は，上式 (12)とより O(γ 2
0 )となるので，式 (5.89–90)を得る．

■変位 u
(t)
ij の式 (5.92–93)について ここでは粘着接触での変位が負号を付けて u

(t)
ij (t) = −

∫ t
0
dt′v

(t)
ij (t

′)と

定義されているので，tij と逆向きを正とした成分となっている．このとき初めて接線方向の力の表式 (5.8)が

適正となる．

例えば粒子 iへ向かうベクトル rij = ri − rj の向きに y 軸を，また簡単のため粒子 j の半径を無限大とし

て，その水平な境界に沿って x軸を，xy 座標系が右手系となるように採る．このとき tij は rij を反時計回り

に π/2回転した −x向きの方向単位ベクトルであり，他方で u
(t)
ij は +x向きを正とする変位となる．

速度成分 v
(t)
ij を時間積分して変位 (5.92–93)を得る際，剪断歪 (5.5)の初期値が γ(ωt)|t=0 = 0であること

を考慮している．

■滑り接触のある場合の式 (5.96–100) について まず変位 u
(t)
12 (t) の式 (5.92) は常に粘着接触が成り立つ場

合の式なので，これを滑り接触のある場合にも用いて，粘着接触が実現する時間を条件

|f (t)12 (t)| < µdf
(t)
12 (n) ≃ µdkNεl i.e. |γ(t)| < γc

から求めることはできない．(他方でこれが任意の時刻 tで成り立つことを要求すれば，もちろん改めて滑り

への転移が生じない条件 γ0 < γc が導かれる．)

そこで歪 γ(θ) = γ0 sin θの大きさが最大値 γ0 から減少するしばらくの間

π

2
≤ θ < π

2
+ Ψ,

3π

2
≤ θ < 3π

2
+ Ψ

に限って，|f (t)12 (t)|が閾値 µdf
(t)
12 (n) ≃ µdkNεl を下回って粘着接触が実現すると仮定しよう．ただし ±x向

きの入れ替えに関する系の x方向の反転対称性から，粘着接触の起きる幅 Ψは 2つの区間に共通とした．

このとき変位 u
(t)
12 と接触力 f

(t)
12 は式 (5.96),(5.101)のように定まる．実際，図 35のように

• γ(θ)が最大値 γ0 から減少に転じる θ = π
2 の直前では u

(t)
12 は正の閾値を，

• γ(θ)が最小値 γ0 から増大に転じる θ = 3π
2 の直前では u

(t)
12 は負の閾値をとる

と考えられる．また

• θ = π
2 からの γ(θ)の減少に伴い θ = π

2 +Ψに達すると，u(t)12 は負の閾値に振り切れ，

• θ = 3π
2 からの γ(θ)の増大に伴い θ = 3π

2 +Ψに達すると，u(t)12 は正の閾値に振り切れる

と考えられる．その閾値 µdkNεl/kT は，対応する f
(t)
12 の値 (5.101)が滑り接触で ±µdf

(t)
12 (n) ≃ ±µdkNεlに

一致することから適正である．さらに粘着状態での u
(t)
12 の値は式 (5.89):v

(t)
12 = −u̇(t)12 = − 3

4 lγ̇ を満たして

いる．

次に式 (5.96)の u
(t)
12 の変化が連続であることを確かめよう．そのためには式 (5.15)の γc =

4µdkNε
3kT

を用い
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図 35 式 (5.96) の変位 u
(t)
12 (θ) のグラフ．γc/γ0 = 1/4, ∴ Ψ = π/3 として描画した．u

(t)
12 (θ) に比例す

る式 (5.101)の f
(t)
12 (θ)と式 (14),(5.16)の σ(t)(θ)のグラフも同じ概形を持つ．

て，式 (5.96)を

4

3

u
(t)
12

l
=



γc
(
0 ≤ θ < π

2

)
γc + (γ(θ)− γ0)

(
π
2 ≤ θ <

π
2 +Ψ

)
−γc

(
π
2 +Ψ ≤ θ < 3π

2

)
−γc + (γ(θ) + γ0)

(
3π
2 ≤ θ <

3π
2 +Ψ

)
γc

(
3π
2 +Ψ ≤ θ < 2π

)
(13)

と簡略化すると見通しが良い．すると γ(θ) = γ0 sin θ より，θ = π
2 ,

3π
2 で u

(t)
12 は連続である．また θ =

π
2 +Ψ, 3π2 +Ψで u

(t)
12 が連続となる条件 (5.99)を課すと，Ψは解 (5.100)で与えられる．このとき逆に

cosΨ = 1− 2γc
γ0

, ∴ γ
(π
2
+ Ψ

)
= γ0 cosΨ = γ0 − 2γc, γ

(
3π

2
+ Ψ

)
= −γ0 cosΨ = −(γ0 − 2γc)

となるので，u(t)12 はもちろん θ = π
2 +Ψ, 3π2 +Ψで連続である．

もっとも冒頭で排除した可能性として，粘着状態での変位 u
(t)
ij が式 (5.92)で与えられ，式 (5.92)に対する

f
(t)
ij = kTu

(t)
ij が ±mudf

(n)
12 ≃ ±µdkNεl を超える間だけ滑り接触が実現するとしても，やはり矛盾は生じな

い．したがって粘着状態への転移が θ = π
2 ,

3π
2 で生じるとする仮定は，少なくとも理論の枠内では非自明だと

考えられる．多体系のシミュレーションと結果を合わせることを指針に採ることはできる．

■σ(n) の式 (5.104–106)と式 (5.13)の導出 式 (5.104–106)では y23 = 0なので，教科書 p.69にあるように

σ
(n)
23 = − 1

A

x23y12
r23

f
(n)
23 = 0

であることに注意する．

次に相対位置ベクトル成分 (5.74–75) と接触力成分 (5.80–81) を用いて σ
(n)
ij の式 (5.105–106) を評価しよ

う．距離 r12, r13 は式 (12)で計算済みである．γ0, ε(≪ 1)の 1次まで残すと，接触力成分 (5.80–81)におい
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て εの掛かった dを lで置き換えて良く，

σ
(n)
12 ≃− kN

l2

A

√
3

2

√
3γ + 1

2

(
1−
√
3

4
γ

)(
ε−
√
3

4
γ

)
≃ −kN

l2

A

(√
3

4
ε− 3

16
γ

)
,

σ
(n)
13 ≃− kN

l2

A

√
3

2

√
3γ − 1

2

(
1 +

√
3

4
γ

)(
ε+

√
3

4
γ

)
≃ −kN

l2

A

(
−
√
3

4
ε− 3

16
γ

)
.

これらを足し，5.2.1項の面積 A =
√
3l2/2を代入すると式 (5.13):σ(n) =

√
3kNγ/4を得る

■σ(t) の式 (5.14),(5.16)の導出 (式 (5.107–109)の箇所) 以下では (i, j) = (1, 2), (1, 3)に対して，それぞれ

順に複号の上側と下側をとるものと約束する．式 (5.108–109):

σ
(t)
ij = − 1

2A

x 2
ij − y 2

ij

rij
f
(t)
12

における f
(t)
12 は式 (5.94),(5.101)より γ0 または εの 1次の微小量なので，前の因子は

− 1

2A

x 2
ij − y 2

ij

rij
= − 1

2A


(√

3γ ± 1

2
l

)2

−

(√
3l

2

)2

{
l

(
1±
√
3

4
γ

)}−1

+O(γ 2
0 ) =

l

4A
+O(γ0) =

1

2
√
3l
+O(γ0)

と評価すれば充分である．最右辺は粒子対 (i, j) = (1, 2), (1, 3)に共通の値となっているので，直観的にも納

得できるように σ
(t)
12 = σ

(t)
13 であり，

σ(t) ≃ 2× 1

2
√
3l
f
(t)
12 =

1√
3l
f
(t)
12 . (14)

ここに f
(t)
12 の式 (5.94),(5.101)を代入すると σ(t) の式 (5.14),(5.16)を得る．

■圧力の式 (5.111)と式 (5.22)の導出 結晶を組んだ粉体系では明らかに粒子の流入に伴う運動量変化に関す

る運動学的圧力はなく，接触力の圧力への寄与 (5.12)を考えれば充分である．式 (5.111)では圧力 (5.12)に

おいて
xijfij,x + yijfij,y = rij · fij = rij ·

(
f
(n)
ij nij + f

(t)
ij tij

)
= rijf

(n)
ij

と書き換えられることを考慮した．接触力の法線成分 f
(n)
ij のみが圧力に寄与することは理に適っている．

次いで圧力の式 (5.22)の導出を補足する．相対位置ベクトル (5.74–75)の大きさは式 (12)で計算済みであ

る．εの 1次まで考慮すると，f (n)ij の式 (5.80–82)で εd ≃ εlとして良い．また γ0 ≪ εを踏まえ，γ0 の 1次

の項は無視する．したがって計算結果は γ → 0の極限値に一致する．このとき 3通りの粒子対 (i, j)の全て

に対して rij ≃ lおよび f
(n)
ij ≃ kNεlは，したがって圧力 (5.110)への寄与 rijf

(n)
ij ≃ kNεl2 は共通である．こ

れは γ → 0の極限で粒子対の対称性が復元されると考えれば納得がいく．これらを足すと

P ≃ 1

2A
3× kNεl2 =

√
3kNε : (5.22)

を得る．
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第 6章　運動論

前章では粉体の固体的性質とそのレオロジーを簡単に説明した．多体接触が常にある固体的状態の記述は難

しく，実際，現状では粒子配置を理論的に決定できない点を指摘した．他方で本章では統計力学の初心に帰

り，粉体の気体的状態を取り上げる．

• 粉体は重力の影響を受けて，稀薄状態をほぼ維持できない．
• 粉体系では非弾性衝突によるエネルギーロスのため平衡状態が存在せず，
外力とのバランスでのみ非平衡定常状態を維持できる．

このため粉体ガスの記述は困難となり，先行研究は計算が煩雑な高密度ガス理論が主流となってきた．しかし

ながら気体運動論に基づき，粉体流をある程度まで記述することは可能である．

6.1　バグノルド理論

粉体の大きな特徴の 1つは，温度が独立な制御パラメータとなり得ないことである*42．ここから方程式の

詳細に依らない，粉体流の普遍的な性質が見出される．

例えば図 36のような単純剪断を考えよう．重力の影響はなく，粉体は共通の粒径 dと質量mを持つハード

コア粒子から成るとする．温度が制御パラメータでないことから，制御変数の中で時間スケールを含んでいる

のは歪速度 γ̇ = ∂vx/∂y のみである．したがって圧力 P や剪断応力 σxy は［M/LT2 の次元を持つので，ス

ケーリング則］
P ∼ σxy ∼ mγ̇2/d (6.1)

に従う．これを Bagnold (バグノルド)則ないし Bagnoldスケーリングと呼ぶ*43．もちろん現実の粉体流は

重力の影響を受ける．すると時間の次元を作るのに重力加速度を用いることができるため，式 (6.1)とは異な

る表現が可能となる．ところが斜面流等の内部では，近似的に重力の影響を受けない単純剪断と似た状態がし

ばしば実現されることが広く認識されている．

図 36 単純剪断流の模式図．

*42 むしろ温度は外力で決まる従属変数と見なす方が適切である．［式 (6.59)を見よ．］
*43 R. A. Bagnold, Proc. R. Soc. London A 225, 49 (1954).
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図 37 (a)無次元化温度 θ := T/(md2γ̇2)の φ依存性．ただし T は運動論的温度 (6.20)．(b)無次元化粘

性率 η∗ := σxy/(nmd2γ̇2) の φ 依存性．数値シミュレーション結果を運動論の予言 (GD) と比較してい

る．［本稿では教科書から図を採った．図中の数値 0.70, · · · , 0.99は 6.6節の図と同様，反発係数と推察さ

れる．］

これから説明するように，稀薄粉体ガスに対して非弾性 Boltzmann方程式を，ある程度濃い気体には非弾

性 Enskog (エンスコッグ)方程式を用いる．その運動論の有用性が広く認識されるようになったのは比較的最

近である．実際，文献

S. Chialvo and S. Sundaresan, Phys. Fluids 25, 0706503 (2013)

では単純剪断流の数値シミュレーションを行っており，反発係数が 0.7 以上，体積分率 φ が 0.5 以下であれ

ば，文献

V. Garzó and J. W. Dufty, Phys. Rev. E 59, 5895 (1999)

の運動論による運動論的温度と粘性率を，フィッティングパラメータなしでよく再現できている (図 37)．

しかし，理論とシミュレーションの良好な一致は偶然の結果である．と言うのも，理論はあくまで剪断等の

かかっていない一様冷却過程を仮定しており，粘性率は空間的な不均一性に起因する速度勾配に対する係数と

して導入されている．

• この定義は空間的な不均一性がほぼ無視できる単純剪断系の粘性率としては相応しくない．
• 理論は冷却過程をベース状態としているため，シミュレーションではっきり確認できる
運動論的温度の異方性 (垂直応力差)［式 (6.48),(6.63)］を説明できない．

• 理論のシミュレーションとのずれは反発係数が小さくなると顕著に見える．

そこで本稿では一様冷却過程に基づく流体理論の導出は省き，剪断流下の Enskog理論を説明する．

6.2　運動論の概略

ここではハードコア粒子系に対して，Boltzmann方程式を拡張した運動論方程式を説明する．
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衝突前後で 2粒子の速度変化 (v1,v2) → (v′
1,v

′
2)を考えよう．接線方向には散逸がなく，法線方向の散逸

が反発係数 en(≤ 1) (定数とする；3.7節後半も見よ)で特徴付けられるとすると，衝突ルールは

v′
1 = v1 −

1

2
(1 + en)(n̂ · v12)n̂, v′

2 = v2 +
1

2
(1 + en)(n̂ · v12)n̂ (6.2)

となる［本稿次節を参照］．ただし v12 := v1 − v2 であり，また n̂は接触時*44の共通法線である．また状況

設定 (v′′
1 ,v

′′
2 ) → (v1,v2) ［すなわち与えられた終状態 (v1,v2) (と法線 n̂) から始状態 (v1,v2) を求める問

題*45］を考えると，式 (6.2)は

v′′
1 = v1 −

1

2en
(1 + en)(n̂ · v12)n̂, v′′

2 = v2 +
1

2en
(1 + en)(n̂ · v12)n̂ (6.3)

と読み替えられる［本稿次節を参照］．

単位時間あたりに位置が r1で速度が区間 (v1,v1+dv1)にある粒子と，位置が r2で速度が区間 (v2,v2+dv2)

にある粒子の間で，［一方の粒子の静止系で見た］散乱角が区間 (θ, θ + dθ)の散乱が起きる確率は，2体分布

関数 f (2) を用いて
f (2)(r1,v1, r2,v2; t)v12I(v12, θ)2π sin θdθdv1 (6.4)

で与えられる (v12 := |v12|)［本稿次節を参照］．ここで微分散乱断面積 I(v12, θ)は，散乱角の範囲 dθ に応じ

た衝突パラメータ bの範囲 dbに対応する円環の断面積を

2πbdb = −I(v12, θ)2π sin θdθ (6.5)

と書いて定義されており，ハードコア粒子［の弾性衝突 (en = 1)］に対して

I(v12, θ) =
d2

4
, 2π

∫ π

0

dθ sin θI(v12, θ) = πd2 (6.6)

である［本稿次節を参照］．

2体の衝突では衝突ルール (6.2–3)［の導出過程］より

v′
12 · n̂ = −en(v12 · n̂); v′′

12 · n̂ = − 1

en
(v12 · n̂) (6.7)

が成り立つ．また散逸により位相体積が収縮することを考慮すると

f (2)(r1,v
′′
1 , r2,v

′′
2 ; t)v

′′
12I(v12, θ)2π sin θdθdv

′′
1dv

′′
2

=
1

e 2
n

f (2)(r1,v
′′
1 , r2,v

′′
2 ; t)v12I(v12, θ)2π sin θdθdv1dv2 (6.8)

が成り立つ［本稿次節を参照］．

したがって衝突による分布関数の変化率は

JE(r1,v1|f (2))

=2π

∫
dv2

∫ π

0

dθ I(v12, θ) sin θ v12

{
f (2)(r1,v

′′
1 , r2,v

′′
2 ; t)

e 2
n

− f (2)(r1,v1, r2,v2; t)

}
(6.9)

*44 ソフトコア粒子の場合は互いに最も近づいたとき．
*45 非弾性衝突 (6.2)は非可逆過程であるため，逆の衝突は (v′

1,v
′
2)→ (v1,v2)と書けないことに注意する．
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となる．［積分変数を v1 → v2 と改めた．式 (6.11–12)の衝突項と併せて本稿次節で補足・修正する．］しか

るに分布関数の時間発展方程式は，外力を Fex として

d

dt
f(r(t),v(t); t) =

∂f

∂t
+ ṙ · ∂f

∂r
+ v̇ · ∂f

∂v
=
∂f

∂t
+ v · ∇f +

Fex

m
· ∂f
∂v

= JE(r(t),v(t)|f (2)) (6.10)

と書けるので，運動論方程式

∂f(r1,v1; t)

∂t
+ v1 · ∇1f(r1,v1; t) +

Fex

m
· ∂f(r1,v1; t)

∂v1

=

∫
dv2

∫
dΩ v12

(
f (2)(r1,v

′′
1 , r2,v

′′
2 ; t)

e 2
n

− f (2)(r1,v1, r2,v2; t)

)
(6.11)

を得る (ただし
∫
dΩ := 2π

∫ π
0
dθ sin θI(vr, θ))．これはハードコア粒子に限らず成り立ち，稀薄極限では［2

体分布を 1体分布の積で表すと］Boltzmann方程式に帰着する．

衝突が起きる条件 v12 · n̂ ≥ 0を踏まえてステップ関数で積分範囲を適切に限定し，またハードコア接触が

|r1 − r2| = dで起きることを考慮して分布関数の引数を接触位置に設定すると，

JE(r1,v1) = d2
∫

dv2

∫
dn̂ Θ(v12 · n̂)(v12 · n̂)

×
{
f (2)(r1,v

′′
1 , r1 + dn̂,v′′

2 ; t)

e 2
n

− f (2)(r1,v1, r1 − dn̂,v2; t)

}
(6.12)

と書ける．

6.2節について

■衝突ルール (6.2)について 接触したハードコア粒子に対する法単位ベクトル n̂を，ハットを省いて単に n

と略記する*46．2粒子の速度の接線成分は衝突前後で変化せず，v1 − (v1 · n)n, v2 − (v2 · n)nのままであ
る．他方で衝突後の相対速度 v′

12 := v′
1 − v′

2 は非弾性衝突の結果，法線成分の大きさが衝突前の en 倍になる

とすると，
v′
12 · n = −env12 · n. (式 (6.7))

ところが同種粒子系を暗に仮定しているので，2粒子の質量中心の速度成分は v1+v2

2 · nであり，質量中心系
で見た 2粒子の衝突後の速度成分は ± 1

2v
′
12 ·n = ∓1

2env12 ·nである．よって衝突後の 2粒子の (実験室系で

見た)速度成分は

v′
1 · n =

v1 + v2

2
· n− 1

2
env12 · n, v′

2 · n =
v1 + v2

2
· n+

1

2
env12 · n

と表される．ここに接線方向の速度成分を加えると，式 (6.2):

v′
1 =[v1 − (v1 · n)n] +

[
v1 + v2

2
· n− 1

2
env12 · n

]
n = v1 −

1

2
(1 + en)(v12 · n)n,

v′
2 =[v2 − (v2 · n)n] +

[
v1 + v2

2
· n+

1

2
env12 · n

]
n = v2 +

1

2
(1 + en)(v12 · n)n

を得る．なお上式から運動量保存則 v1 + v1 = v′
1 + v′

2 (式 (6.15))が満たされていることが直接読み取れる．

*46 法単位ベクトル n を粒子 1 の中心から粒子 2 の中心に向かう向きに定義しても，その逆ベクトルとして定義しても以下の導出は
そのまま成り立つ．実際，式 (6.2)は置き換え n→ −nに対して不変なので，結果は nを逆ベクトルで定義しても変わらない．
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■衝突ルール (6.3)について 式 (6.2)で始状態 (v1,v2)を (v′′
1 ,v

′′
2 )に，終状態 (v′

1,v
′
2)を (v1,v2)に書き換

え，(v′′
1 ,v

′′
2 )について解けば良い．実際には等価的に式 (6.2)の導出過程に立ち返って，次のように考えるの

が容易である．すなわち相対速度の法線成分は v12 · n = −env′′
12 · nを満たすので (式 (6.7))，質量中心系で

見た 2粒子の衝突前の速度成分は ±1
2v

′′
12 · n = ∓ 1

2en
v12 · nである．すると式 (6.2)の導出と同様にして，式

(6.3):

v′′
1 =[v1 − (v1 · n)n] +

[
v1 + v2

2
· n− 1

2en
v12 · n

]
n = v1 −

1

2

(
1 +

1

en

)
(v12 · n)n,

v′′
2 =[v2 − (v2 · n)n] +

[
v1 + v2

2
· n+

1

2en
v12 · n

]
n = v2 +

1

2

(
1 +

1

en

)
(v12 · n)n

を得る．

■衝突確率 (6.4)について 一方の剛体球の中心は，静止したもう一方の剛体球の中心から距離 dまで近づく

ことができる．そこで等価的に図 38のような，剛体球の直径 dを半径に持つ仮想的な剛体球による質点の散

乱を考えよう．同じ衝突パラメータ bに対しても反発係数 en に応じて，散乱角 θ は変化し得る．これに対し

図 38で定義した n̂の向きを表す角 φは，常に b = d sinφを満たすことに注意しよう．

さて，式 (6.4) における円環面積 (6.5) と v12 の積は，標的粒子 1 (ただし半径 d) に衝突する粒子 2 が

占めるシリンダーの体積である．(他方で粒子 1 の位置 r1 の周りには単位の体積を想定している．後の式

(6.9),(6.11)を見よ．) b = d sinφを用いると，シリンダーの体積は

v12 · 2πbdb = v12 cosφ · d2 · 2π sinφdφ = (v12 · n̂)d2dΩn̂ dΩn̂ = 2π sinφdφ :向きn̂の立体角

と書き換えられる．ただし最右辺では n̂を粒子 1から粒子 2に向かう向きとした．最右辺は球面上の衝突範

囲 d2dΩn̂ を底面，相対速度 v12 を辺とする“斜角柱”の体積である [6, pp.74–75]．

そこで衝突頻度 (6.4)は，速度範囲 dv2 も掛けると

f (2)(r1,v1, r2,v2; t)v12 · 2πbdbdv1dv2 = f (2)(r1,v1, r2,v2; t)(v12 · n̂)d2dΩn̂dv1dv2 (15)

となる．衝突が起きる条件は v12 · n̂ ≥ 0である．

■断面積 (6.5–6)について [9, pp.60–61] ハードコア粒子 (剛体球)に対して db/dθ < 0であることに注意す

ると，微分断面積 (6.5)は dθ > 0に対して

dσ = 2πb

∣∣∣∣dbdθ
∣∣∣∣dθ = − b

sin θ

db

dθ
dΩ, Ω = 2π sin θdθ : 散乱方向の立体角

と書き換えられる．よって式 (6.5)右辺のように負号を導入して I を定義すると，I = b
sin θ

db
dθ と同定される．

ここで再び図 38の角 φを用いると，衝突パラメータは

b = d sinφ = d sin
π − θ
2

= d cos
θ

2

と表される．これを代入すると

db

dθ
= −d

2
sin

θ

2
(≤ 0), I =

b

sin θ

db

dθ
= −d

2

4
(式 (6.6)第 1式，符号を修正した)

を得る．このように剛体球の弾性衝突に対して I は定数である．
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図 38 ハードコア粒子の弾性衝突における衝突パラメータ bと散乱角 θ の関係

このとき次いで式 (6.6)第 2式が，

σ =

∫
dσ = −

∫
IdΩ =

d2

4
· 4π = πd2

と確かめられる (符号を修正した)．したがって全断面積は期待されるように，半径 dの球を正面から見た幾何

学的な断面積に一致する．このことは関係式 (6.5)を通じて，円環面積の和 σ =
∫ d
0
2πbdb = πd2 としても理

解できる．非弾性衝突に対しても全断面積は πd2 となることが，あらかじめ期待される．

なお式 (6.2)の 2式を辺々引くと

v′
12 = v12 − (1 + en)(n̂ · v12)n̂

となる．ここから始状態の相対速度 v12 を定数 k 倍すると，終状態の相対速度 v′
12 も単に定数 k 倍となり，

その向きは変わらないことが判明する．したがって非弾性衝突であっても，少なくとも一定の反発係数 en に

対する単純な衝突ルール (6.2)が成り立つ場合には，散乱角は衝突パラメータ bで決まり，相対速度の大きさ

v12 には依らない．すると微分散乱断面積 I(v12, θ)は実のところ v12 に依らないはずである．そこで式 (6.8)

以降の I の引数 v12 の値は，ひとまず不問とできる．

■積分変数の変換則 (6.8)について 逆の衝突 (v′′
1 ,v

′′
2 ) → (v1,v2) では重心速度は不変であり，相対速度は

n̂方向に en 倍に縮む．このため非弾性衝突において速度空間 (したがって相空間)の体積は en 倍になり，

dv′′
1dv

′′
2 =

1

en
dv1dv2

が成り立つ．

他方で相対速度成分は n̂方向のみ大きさが変化するので，v′′12 = 1
en
v12 は成り立たず，式 (6.8)は得られな

い．そこで代わりに式 (6.7)第 2式が成り立つことに注意して，逆の衝突の確率を上式 (15)と同じ形

f (2)(r1,v
′′
1 , r2,v

′′
2 ; t)(v

′′
12 · (−n̂))d2dΩn̂dv

′′
1dv

′′
2 =

1

e 2
n

f (2)(r1,v
′′
1 , r2,v

′′
2 ; t)(v12 · n̂)d2dΩn̂dv1dv2 (16)

に書く．ただし積分変数 n̂を逆ベクトル (粒子 2から粒子 1の向き)に選んでおり，したがって衝突が起きる

条件 v′′
12 · (−n̂) ≥ 0はここでも v12 · n̂ ≥ 0である．
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■式 (6.9),(6.11–12) の衝突項について 運動論方程式 (6.10–11) における JE を衝突項と呼ぶ．まずは衝突

(粒子間相互作用)がなく，粒子が外力 Fex の下でのみ運動する場合を考えよう．すると Liouvilleの定理によ

り動点の集団に固定した位相空間の体積は不変なので，式 (6.10)で衝突項をゼロとおいた式

Df

Dt
=
∂f

∂t
+ ṙ · ∂f

∂r
+ v̇ · ∂f

∂v
=
∂f

∂t
+ v · ∇f +

Fex

m
· ∂f
∂v

= 0

が成り立つ．逆に言えば衝突の寄与を考慮して，上式に衝突項を加えた時間発展方程式が式 (6.10)である．

衝突項の具体的表式 (6.9)の考察に移ろう．衝突 (6.2)と逆の衝突 (6.3)による速度 (v1,v2)の消滅・生成

確率は，それぞれ上式 (15),(16)で与えられる．よって単位時間での (r1,v1)周りの単位体積における，衝突

による分布関数の変化は，式 (6.9)の代わりに

JE(r1,v1|f (2)) =
∫
v2,n̂

[
差 {(式 (16)−式 (15)}の dv1の係数

]
=d2

∫
dv2dΩn̂(v12 · n̂)

{
f (2)(r1,v

′′
1 , r2,v

′′
2 ; t)

e 2
n

− f (2)(r1,v1, r2,v2; t)

}
で表される．式 (6.11) 右辺も上式に修正する．上記のように 2 項のいずれに対しても衝突が起きる条件は

v12 · n̂ ≥ 0なので，続く式 (6.12)のようにステップ関数 Θ(v12 · n̂)を被積分関数全体に掛ければ積分範囲を
適切に表現できる．他方でこのとき法線 ˆ⃗nは上記で選んだ向きなので，順の衝突の寄与 (第 2項)では衝突位

置を r2 = r1 + dn̂，逆の衝突の寄与 (第 1項)では衝突位置を r2 = r1 − dn̂と書かねばなるまい (教科書の

式 (6.12)と符号が逆)．

以上より最終的な結論として，運動論方程式は

∂f(r1,v1; t)

∂t
+ v1 · ∇1f(r1,v1; t) +

Fex

m
· ∂f(r1,v1; t)

∂v1
= JE(r1,v1),

JE(r1,v1) = d2
∫

dv2dΩn̂Θ(v12 · n̂)(v12 · n̂)

×
{
f (2)(r1,v

′′
1 , r1 − dn̂,v′′

2 ; t)

e 2
n

− f (2)(r1,v1, r1 + dn̂,v2; t)

}
(17)

と修正されると考えられる．実際このとき初めて式 (6.28) が得られる．なお v′′
1 ,v

′′
2 は式 (6.3) を通じて

v1,v2, n̂の関数となっている．

6.3　運動論的応力

6.3.1　稀薄気体の運動論的応力

note 本項の内容は例えば文献 [5, p.117–120] で詳しく説明されており，その一連の式の導出は文献 [6] の

ノートの付録にて確認済みである．そこで本稿では式の導出をいちいち繰り返さない．

［4.2節で述べたように］応力にはポテンシャルに由来する接触応力だけでなく，［運動量の流入による］運

動論的応力も寄与する (式 (6.24))．簡単のため内部自由度のない同種粒子 (質量 m) から成る気体を考える

と，外力 Fex = 0の下で分布関数の時間発展方程式 (6.10)は

∂

∂t
f(r1,v1; t) + (v1 · ∇1)f(r1,v1; t) = JEf(r1,v1|f (2)) (6.13)

となる．

94



2体の衝突では質量と運動量が保存し，弾性衝突 en = 1ではエネルギーも保存する：

(衝突前の 2体の全質量) =(衝突後の 2体の全質量), (6.14)

m(v1 + v2) =m(v′
1 + v′

2), (6.15)

1

2
m(v 2

1 + v 2
2 ) =

1

2
m(v′

1
2
+ v′

2
2
). (6.16)

言い換えれば ψ(v) = m,mv, 12mv2 は衝突不変量である．このことは∫
dv ψ(v)JE = 0 (6.17)

と等価である*47．

ここで流体変数として，密度 n，平均速度ベクトル u，運動論的温度 T を

n :=

∫
dv f, (6.18)

nu :=

∫
dv vf, (6.19)

3

2
nT :=

∫
dv

1

2
m(v − u)2f (6.20)

で定義しよう．［ここでは 6.2節のように f を確率密度と見なさず粒子数N 倍で再定義し，式 (6.18)を粒子数

密度と解釈すると見通しが良い．また式 (6.20)左辺では Boltzmann定数を kB = 1とおいている．］式 (6.20)

で定義した運動論的温度 T は平衡気体 (en = 1で空間的に均一な系)では熱力学的温度に一致するが，粉体の

レオロジーでは両者は一致しない．

さて，式 (6.13)に衝突不変量 ψ(v)を掛けて積分すると，流体方程式として一連の連続の式が得られる．ま

ず ψ(v) = mに対して，質量ないし粒子数の保存則

0 = ∂tn+

∫
dv (v · ∇)f = ∂tn+∇ · (nu) (6.21)

が帰結する．次に ψ(v) = mv に対しては，運動量の連続の式

∂t(nuα) + ∂β

∫
dv vαvβf = 0 (6.22)

が得られる．ここで［運動量流束は］ ∫
dv vαvβf = nuαuβ −

σk
αβ

m
(6.23)

と書き換えられ，ここに

σk
αβ = −m

∫
dv(vα − uα)(vβ − uβ)f (6.24)

は運動論的ストレステンソルである．したがって運動方程式

∂

∂t
u+ u · ∇u =

1

ρ
∇ ·
←→
σk (6.25)

*47 式 (6.17)はあくまで稀薄極限で成り立ち，6.3.2項で見るように有限濃度では ψ(v) = mv, 1
2
mv2 に対しては成り立たない．［実

際，導出には 2体分布を 1体分布の積で表した，稀薄気体に対する Boltzmann方程式を用いる．式 (6.29)の箇所を見よ．］
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が得られる．さらに ρϵ = (3/2)nT と書いて内部エネルギー密度を定義すると，同様にエネルギー保存則

(2.12)が導かれる．ただしその際，［流体静止系で見た熱運動の速度］w := v − uを用いて熱流は

q :=
1

2

∫
dvmw2wf (6.26)

と同定される．

通常の気体分子運動論では等方的な平衡分布周りの空間的に不均一なゆらぎを考慮して，その展開係数とし

て輸送係数を導入する．しかし粉体等では空間的に均一で，なおかつ剪断がかかった異方的な状態が容易に実

現するため，そのような展開は必ずしも成り立たない．そこで粉体系の記述に適した運動論をこれから紹介し

ていく．

6.3.2　ハードコア極限での接触応力

ここでは 4.2.1項で論じたソフトコア系の接触応力のハードコア極限を調べる．

• ハードコア系では接触力は存在しない［発散してよく定義されない］ので，
接触応力の公式 (4.15)をそのまま適用できない．

• ハードコア系では［あるいは粉体系でも気体的状態では］運動論的応力 (6.24)も無視できない．

• 有限密度では式 (6.17)は成り立たない．

これらを踏まえ式 (6.12)を用いて，接触応力の公式 (4.15)のハードコア極限を考える．

衝突不変量 ψ(v)との間のモーメント (式 (6.17)左辺)

Iψ(r) =

∫
dv ψ(v)JE(r,v|f (2)) (6.27)

を考えよう．これは

Iψ(r1) = d2
∫

dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)

×
[
ψ(v′

1)− ψ(v1)
]
f (2)(r1,v1, r1 + dn̂,v2; t)

= d2
∫

dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)

×
[
ψ(v′

2)− ψ(v2)
]
f (2)(r1,v2, r1 − dn̂,v1; t) (6.28)

と書き直せる［本稿次項を参照］．ただし第 2の等号では積分変数 v1 と v2［したがって v′
1 と v′

2］を入れ替

え，n̂→ −n̂と変換した．上式 (6.28)より［その第 2辺と第 3辺を足して 2で割ると］，

Iψ(r1) =
d2

2

∫
dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)

×
{[
ψ(v′

1)− ψ(v1)
]
f (2)(r1,v1, r1 + dn̂,v2; t)

+
[
ψ(v′

2)− ψ(v2)
]
f (2)(r1,v2, r1 − dn̂,v1; t)

}
=
d2

2

∫
dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)

×
{[
ψ(v′

1) + ψ(v′
2)− ψ(v1)− ψ(v2)

]
f (2)(r1,v1, r1 + dn̂,v2; t)

+
[
ψ(v′

1)− ψ(v1)
][
f (2)(r1,v1, r1 + dn̂,v2; t)− f (2)(r1,v1, r1 − dn̂,v2; t)

]}
(6.29)
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と書き直せる．［教科書の式 (6.29)最右辺 {· · · }内の 2行目で [ψ(v′
2)− ψ(v2)]→ [ψ(v′

1)− ψ(v1)]と修正し

た (式 (6.31)も同様)．本稿次項を見よ．実際この修正は式 (6.32)には影響せず，またこのように修正して初

めて式 (6.33),(6.35)が得られる．］

上式 (6.29)最右辺第 1項は衝突不変量 ψ(v)に対して，［その定義 ψ(v1) + ψ(v2) = ψ(v′
1) + ψ(v′

2)より］

ゼロになる．［第 2項もまた稀薄極限を念頭に f (2)(r1,v1, r2,v2; t) = f(r1,v1; t)f(r2,v2; t)と書き，さらに

質点系を仮定して d = 0とおけば，2つの f (2) が相殺してゼロになる*48．］しかし有限濃度では第 2項はゼロ

にならない．このことを確認するために，任意関数 F (r, r + dn̂)に対する恒等式

F (r, r + dn̂)− F (r − dn̂, r) = −
∫ 1

0

dx
∂

∂x
F (r − xdn̂, r + (1− x)dn̂)

= dn̂ · ∂
∂r

∫ 1

0

dxF (r − xdn̂, r + (1− x)dn̂) (6.30)

を用いよう．［積分変数 xを位置 r の第 1成分と混同しないよう注意せよ*49．］すると式 (6.29)は

Iψ(r1) =
d2

2

∫
dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)∇ · [ψ(v′

1)− ψ(v1)] dn̂

×
∫ 1

0

dx f (2)(r1 − xdn̂,v1, r1 + (1− x)dn̂,v2; t) (6.31)

と書き換えられる．上式 (6.31)について，教科書の説明を修正しつつまとめる：微分∇ = ∂/∂r1 は後ろの全

ての因子に作用する．ところで x積分の結果は確かに，もはや xには依存しない．しかし被積分関数 f (2) を

先に微分すると，f (2) を評価する 2つの空間位置が一般には異なるので，微分はゼロにならない．したがって

上式 (6.31)は有限の値をとり得る．

以上より粒子数 ψ(v) = 1に対しては［上式 (6.31)で ψ(v′
1)− ψ(v1) = 0となるので］，式 (6.17)で説明し

た関係

I1(r1) =

∫
dv JE(r,v|f (2)) = 0 (6.32)

が成り立つ．他方で運動量 ψ(v) = mvに対して式 (6.31)は，［差 ψ(v′
1)−ψ(v1) = m(v′

1 − v1)を式 (6.2)か

ら読み取ると］

Imv(r1) =−
1 + en

4
md3∇ ·

∫
dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)

2n̂n̂

×
∫ 1

0

dx f (2)(r1 − xdn̂,v1, r1 + (1− x)dn̂,v2; t) (6.33)

を与える．［∇ · [n̂n̂(· · · )] は ∂β [n̂αn̂β(· · · )] を第 α 成分に持つベクトルの意味である．これはノンゼロであ

る．］ここでハードコア系の接触応力←→σ c は

Imv(r) = ∇ ·←→σ c (6.34)

と同定できる［本稿次項を参照］．よって公式 (4.15)のハードコア極限が

←→σ c(r1) :=−
1 + en

4
md3

∫
dv1

∫
dv2

∫
dn̂Θ(n̂ · v12)(n̂ · v12)

2n̂n̂

×
∫ 1

0

dx f (2)(r1 − xdn̂,v1, r1 + (1− x)dn̂,v2; t) (6.35)

*48 式全体に掛かる d2 はゼロにせず，πd2 を相互作用で決まる有限の断面積に置き換える．
*49 積分変数を xの代わりに文字 αなどで表すと混乱を避けられる．
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と求まる．Imv2/2 についても同様の議論が可能であり，やはり有限濃度でゼロにならない．

6.3.2項について

■式 (6.28)第 1の等号について 式 (6.12)の引数の符号を修正した式 (17)を用いると，

Iψ(r1) =

∫
dv1 ψ(v1)J(r1,v1|f (2))

=d2
∫

dv1dv2dΩn̂Θ(n̂ · v12)(n̂ · v12)ψ(v1)

{
f (2)(r1,v

′′
1 , r1 − dn̂,v′′

2 ; t)

e 2
n

− f (2)(r1,v1, r1 − dn̂,v2; t)

}
.

ここで最右辺第 1項は，式 (6.7):(n̂ · v12)dv1dv2 = −e 2
n (n̂ · v′′

12)dv
′′
1dv

′′
2 を適用すると

− d2
∫

dv′′
1dv

′′
2dΩn̂Θ(−n̂ · v′′

12)(n̂ · v′′
12)ψ(v1)f

(2)(r1,v
′′
1 , r1 − dn̂,v′′

2 ; t)

=d2
∫

dv′′
1dv

′′
2dΩn̂Θ(n̂ · v′′

12)(n̂ · v′′
12)ψ(v1)f

(2)(r1,v
′′
1 , r1 + dn̂,v′′

2 ; t)

=d2
∫

dv1dv2dΩn̂Θ(n̂ · v12)(n̂ · v12)ψ(v
′
1)f

(2)(r1,v1, r1 + dn̂,v2; t)

と書き換えられる．ここで第 1の等号では積分変数を n̂→ −n̂と変換した．また第 2の等号では 2種類の衝

突 (v′′
1 ,v

′′
2 )→ (v1,v2)と (v1,v2)→ (v′

1,v
′
2)とで，衝突前後の速度の関係が等しいことに注意し，積分変数

の記号を改めた．こうして式 (6.28)第 2辺を得る．

■式 (6.29)の修正について 教科書では「2つ目の等号に変形する際に時間反転で n̂→ −n̂となることを用
いている」(p.109，l.15–16)と説明されている．いずれにせよ一見すると教科書の式 (6.29)最右辺は {· · · }内
の 2行目以降で n̂ → −n̂とすると第 2辺に戻る印象を与える．しかし実際には被積分関数の因子 n̂ · v12 の

符号も反転する．そこで {· · · }内の 2行目以降の寄与を本稿のように

d2

2

∫
dv1dv2dn̂Θ(n̂·v12)(n̂·v12)[ψ(v

′
1)−ψ(v1)]

[
f (2)(r1,v1, r1 + dn̂,v2; t)− f (2)(r1,v1, r1 − dn̂,v2; t)

]
と修正しよう．すると粒子 1,2 の入れ替えに伴い n̂ → −n̂,v12 → −v12 となるので，n̂ · v12 は不変に留ま

る．また [ψ(v′
1)−ψ(v1)]→ [ψ(v′

2)−ψ(v2)]と戻る．さらに 2体分布関数は定義より引数 r1,v1 と r2,v2 の

入れ替えに関して対称であることを踏まえると，

f (2)(r1,v1, r1 ± dn̂,v2; t) → f (2)(r1 ∓ dn̂, r1,v1,v2; t) = f (2)(r1,v1, r1 ∓ dn̂,v2; t)

と置き換わる．以上より式 (6.29)最右辺は第 2辺に戻る．

■ハードコア系の接触応力 (6.34)について 式 (6.13)に ψ(v) = vα を掛けて積分すると，ρ = mnを質量密

度として

Imvα(r) =

∫
dv(mvα)JE(r,v|f (2)) = ∂t(ρuα) + ∂β(ρuαuβ − σk

αβ)

が得られるところまでは，流体方程式 (6.25)の導出過程と変わらない．ところが最左辺の Imvα(r)はここで

はゼロでないので，運動方程式 (6.25)は

∂t(ρuα) + ∂β(ρuαuβ) = ∂βσ
k
αβ + Imvα

と修正される*50．ここから付加的な項を接触力による応力 (6.34):Imvα = ∂βσ
c
αβ に同定することが動機付け

られる．

*50 連続の式 (6.21)の下で左辺は ρDtuα = ρ(∂tuα + uβ∂βuα)に一致する．
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6.4　 SLLOD方程式

剪断のかかった系を理論的に記述するために，5.3節で触れたように Lees-Edwards境界条件と SLLODモ

デルを採用する．SLLODモデルは SLLOD方程式

pi,t =mi(ṙi − γ̇yiex), (6.36)

ṗi,t =Fi − γ̇py,i,tex (6.37)

で定義される．ここで第 1式 (6.36)は剪断に伴う速度の寄与を差し引いた特性 (peculiar)運動量を定義して

いる．他方で第 2式 (6.37)の選択はユニークではない．しかし 2式を組合せると

mir̈i = Fi +miγ̈yiex (6.38)

が得られる．［第 2項にmi を補った．本稿次節を見よ．］すると剪断をかけ始める時刻 t = 0のすぐ後を除き

定常剪断化では γ̈ = 0なので，Newtonの運動方程式を実現できる．さらに SLLODモデルには剪断の影響

が境界層に局在することなく，一様剪断状態を実現できるという利点がある．

そこで SLLODモデルに対して分布関数の発展方程式を導出する．［分布関数の引数を成す単なるパラメー

タを考えて*51］粒子番号 iを省き，特性速度

Vt := v − γ̇yex (6.39)

を導入する．さらに剪断座標
t̃ := t, Rt := r − γ̇ytex (6.40)

を定義すると

∂

∂t
=

∂

∂t̃
− γ̇yt

∂

∂xt
,

∂

∂x
=

∂

∂xt
,

∂

∂y
=

∂

∂yt
− γ̇t ∂

∂xt
− γ̇ ∂

∂Vx,t
,

∂

∂z
=

∂

∂zt
(6.41)

が成り立つ［本稿次節で補足］．分布関数 f の変数を剪断座標に選んだときの関数名を f̃ として，

f(r,v; t) = f̃(Rt,Vt; t̃) (6.42)

と書こう．このとき分布関数の時間発展方程式 (6.13)は

∂f̃(Rt,Vt; t̃)

∂t̃
+

(
Vt · ∇t − γ̇tVy,t

∂

∂xt
− γ̇Vy,t

∂

∂Vx,t

)
f̃(Rt,Vt; t̃) = JE(Rt,Vt|f (2)) (6.43)

となる (ただし ∇t := ∂/∂Rt)．さらに系を空間的に均一とする近似を導入すると，

∂f̃(Vt; t̃)

∂t̃
− γ̇Vy,t

∂

∂Vx,t
f̃(Vt; t̃) ≈ JE(Vt|f (2)) (6.44)

を得る．［上式 (6.43–44)を本稿次節で補足する．もとの式 (6.13)と比べると］剪断系の特徴は，Vx,t と Vy,t

の混ざった第 2項に反映・集約されている．

*51 2式 (6.39–40)を見比べると少なくとも y は力学変数として扱われていないため，特定の粒子 iを考えて粒子番号 iを省いたとは
言い難い．
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以降では剪断系の変数のチルダと添字 tを省略し，単に

∂f(V ; t)

∂t
− γ̇Vy

∂

∂Vx
f(V ; t) = JE(V |f (2)) (6.45)

と書く．この両辺にmVαVβ を掛け速度 V で積分すると

dσk
αβ

dt
+ γ̇(δαxσ

k
yβ + δβxσ

k
yα) = Λαβ (6.46)

が得られ［本稿次節で確認］，ここにモーメント

←→
Λ := −m

∫
dV V V JE(V |f (2)) (6.47)

を定義した．［
←→
Λ の決定は 6.5節で論じられる．］

ここで運動学的温度 T と異方的温度∆T, δT を

T := −
σk
xx + σk

yy + σk
zz

3n
, ∆T :=

σk
yy − σk

xx

n
, δT :=

σk
zz − σk

xx

n
(6.48)

で導入すると，式 (6.46)は

∂

∂t
T =

2

3n
γ̇σk

xy −
1

3n
Λαα, (6.49a)

∂

∂t
∆T =

2

n
γ̇σk

xy −
1

n
(Λxx − Λyy), (6.49b)

∂

∂t
δT =

2

n
γ̇σk

xy −
1

n
(2Λxx + Λyy − Λαα), (6.49c)

∂

∂t
σk
xy =− γ̇σk

yy + Λxy (6.49d)

と書き直せる［本稿次節を参照］．

後の便宜のため無次元化した温度

θ :=
T

md2γ̇2
, ∆θ :=

∆T

md2γ̇2
, δθ :=

δT

md2γ̇2
(6.50)

を定義する．これらと無次元化した時間 τ := γ̇tを用いると，式 (6.49)は

∂

∂τ
θ =− 2

3
Π∗
xy −

1

3
Λ∗
αα, (6.51a)

∂

∂τ
∆θ =− 2Π∗

xy − (Λ∗
xx − Λ∗

yy), (6.51b)

∂

∂τ
δθ =− 2Π∗

xy − (2Λ∗
xx + Λ∗

yy − Λ∗
αα), (6.51c)

∂

∂τ
Π∗
xy =−

(
θ − 2

3
∆θ +

1

3
δθ

)
− Λ∗

xy (6.51d)

と書き換えられる．［式 (6.51d)の確認には本稿次節の式 (20)が有用である．］ここに

Π∗
αβ := −

σk
αβ

nmd2γ̇2
− θδαβ , Λ∗

αβ :=
Λαβ

nmd2γ̇3
(6.52)

である．［上式 (6.51)には Π∗
xy しか現れないため，Π∗

αβ の第 2項 −θδαβ の有無に依らず式 (6.51)は成り立

つ．第 2項 −θδαβ を含めて定義したため Π∗
αβ はトレースレスとなっている (Π∗

αα = 0)．］
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6.4節について

■式 (6.38)の確認 特性運動量 (6.36)の y 成分は py,i,t = miẏi である．よって式 (6.36)の時間微分をとり

式 (6.37)を代入すると，

mir̈i = ṗi,t +mi(γ̈yi + γ̇ẏi)ex = (Fi − γ̇py,i,tex) + (miγ̈yi + γ̇ẏi)ex = Fi +miγ̈yiex : (6.38)

を得る．

■SLLOD モデル (6.36–38) と分布関数の発展方程式 (6.43–44) の関係について 分布関数の発展方程式

(6.43–44)の変数に特性速度 (6.39)を選ぶことは，特性運動量の定義式 (6.36)から動機付けられる．他方で

SLLODモデルのダイナミクス (6.37) は分布関数の議論ではあからさまには用いられていない．しかしなが

ら運動方程式 (6.38) (ただし Fi = 0)が成り立つことから，式 (6.13)を以降の出発点に採ることが正当化さ

れる．

■座標変換 (6.40–41)について 式 (6.40)を座標成分の関係

t̃ = t, xt = x− γ̇yt, yt = y, zt = z

と解すれば，式 (6.41):
∂

∂t
=
∂t̃

∂t

∂

∂t̃
+
∂xt
∂t

∂

∂xt
=

∂

∂t̃
− γ̇yt

∂

∂xt
, etc.

が得られる．ただし教科書では ∂/∂y の表式において，特性速度 (6.39)の成分 Vx,t = vx − γ̇y を通した微分
−γ̇∂/∂Vx,t を見落としている．本稿の式 (6.41)ではこの項を補い，式 (6.43–44)にもこの修正を反映させて

おいた．

■f̃ の時間発展方程式 (6.43–44)について 微分の変換則 (6.41)を用いると，式 (6.13)左辺の各項は

∂

∂t
f =

(
∂

∂t̃
− γ̇yt

∂

∂xt

)
f̃,

(v · ∇)f =(Vt + γ̇ytex) ·
{
ex

∂

∂xt
+ ey

(
∂

∂yt
− γ̇t ∂

∂xt
− γ̇ ∂

∂Vx,t

)
+ ez

∂

∂zt

}
f̃

=

{
Vt · ∇t − Vy,t

(
γ̇t

∂

∂xt
+ γ̇

∂

∂Vx,t

)
+ γ̇yt

∂

∂xt

}
f̃ (Vt · ey = Vy,t(= Vyt,t))

となる．これらを辺々足すと式 (6.43)左辺が得られる．右辺では単に JE(r,v|f (2))を JE(Rt,Vt|f (2))と書
き改めており，f̃ とは対照的に，引き続き関数名に同じ記号 JE を用いている．

次に粉体系を念頭に，剪断を差し引いたフレームで見た分布 f̃ が空間的に均一である場合を考える．このと

き式 (6.43)で単に空間座標 Rt による微分を落とせば，直ちに式 (6.44)が得られる．他方で教科書では微分

の変換則 (6.41)を誤っているため，後から無根拠な関係「∂/∂Vx,t = t(∂/∂xt)」(p.112，l.16)を用いて空間

微分を書き換え，強引に辻褄を合わせている．これは端的に誤りである．また教科書の式 (6.44–45)で分布関

数の引数 Rt (ないし R)は省略して良いと考えられる．JE(Vt|f (2))における 2体分布の空間依存性は 6.5.1

項で除かれる．
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■式 (6.46)の導出 まずは準備として，分布関数の時間発展が式 (6.45)で与えられる場合の流体方程式を再

考しよう．式 (6.18–19)と同様に流体変数

n =

∫
dV f, nU =

∫
dV V f, ρ = mn

を定義する．

このとき式 (6.45)を速度 V で積分すると，粒子数の保存則として

0 = I1 =

∫
dV JE(V |f (2)) =

∫
dV

(
∂f

∂t
− γ̇Vy

∂f

∂Vx

)
=

dn

dt
(18)

を得る．ただし最後の等号では，剪断系の空間的な境界条件とは無関係に，剪断の速度を差し引いた特性速度

Vx → ±∞に対しては f → 0となると仮定して部分積分を行った．また nは空間位置に依らないと仮定して

いるので，最右辺では常微分の記号を用いた．

次に運動量保存則を考える．空間的に一様な系を考えているため，衝突不変量のモーメント (6.31)は f (2)

が空間依存性を持たず，運動量 ψ = mVα に対してもゼロになると考えられる．これを踏まえて式 (6.45)に

mVα を掛け V で積分すると，再び部分積分により

0 =

∫
dV (mVα)JE(V |f (2)) =

∫
dV (mVα)

(
∂f

∂t
− γ̇Vy

∂f

∂Vx

)
=

d

dt
(ρUα) + δαxγ̇mUy (19)

が得られる．上式 (18)より，最右辺第 1項の ρ(= mn)は時間微分の前に出して良い．

式 (6.46)の導出に移ろう．式 (6.45)にmVαVβ を掛け V で積分すると，同様に

−Λαβ =

∫
dV (mVαVβ)JE(V |f (2)) =

∫
dV (mVαVβ)

(
∂f

∂t
− γ̇Vy

∂f

∂Vx

)
=

d

dt
Iαβ + γ̇(δαxIβy + δβxIαy),

Iαβ :=m

∫
dV VαVβf = m

∫
dV (Uα +Wα)(Uβ +Wβ)f (W := V −U)

を得る．ここで Iαβ を評価するために，恒等的に∫
dV Wαf =

∫
dV (Vα − Uα)f = nUα − Uα

∫
dV f = nUα − nUα = 0

が成り立つことに注意しよう．すると Uα とWβ のクロス・タームは寄与を持たないので，

Iαβ = ρUαUβ − σk
αβ , σk

αβ := −m
∫

dV WαWβf(= σk
βα) : (6.24)

を得る．これを上式に代入すると

dσk
αβ

dt
+ γ̇(δαxσ

k
βy + δβxσ

k
αy) = Λαβ +

{
d

dt
(ρUαUβ) + γ̇ρ(δαxUβUy + δβxUαUy)

}
.

ところが右辺の {· · · }は連続の式 (18),(19)により正確に相殺するので，式 (6.46)を得る．

■温度の式 (6.48–49)について 運動学的温度の定義式 (6.20)は，運動学的ストレスの定義式 (6.24)と組合

せると 3nT = −σk
αα と書ける．これが式 (6.48)第 1式である．後ろの 2式もこれに準じた形をしており，等

方的な系に対してゼロになることが期待されるため，異方的温度と呼べる．式 (6.48)をストレスについて逆

に解くと

σk
xx = −n

(
T +

1

3
∆T +

1

3
δT

)
, σk

yy = −n
(
T − 2

3
∆T +

1

3
δT

)
, σk

zz = −n
(
T +

1

3
∆T − 2

3
δT

)
(20)
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となる．したがって温度 (T,∆T, δT )を求めることは，ストレスの対角成分 (σk
xx, σ

k
yy, σ

k
zz)を求めることと等

価である．

また xy面内の剪断を考えているため，非対角成分としては σk
xy, σ

k
yxに興味が持たれる．定義より σk

xy = σk
yx

であり，このことと整合して発展方程式 (6.46)は (α, β) = (x, y), (y, x)に対して同一の方程式 (6.49d)を与

える．ただし式 (6.46)と同様，時間微分は常微分の記号で書いて良い．

残る温度に対する発展方程式 (6.49a–c)は，式 (6.46)がストレスの対角成分に対して

dσk
xx

dt
= −2γ̇σk

xy + Λxx,
dσk

yy

dt
= Λyy,

dσk
zz

dt
= Λzz

を与えることから容易に確認できる．ただし式 (6.49a,c)では Λzz の代わりに，トレース Λαα = Λxx+Λyy +

Λzz を用いて結果を表している．

6.5　近似的クロージャー理論

6.5.1　エンスコッグ近似
式 (6.44)では空間的に一様な剪断流を考え，空間微分を無視した．しかし式 (6.44)の衝突積分 JE(·|f (2))
や式 (6.46),(6.49)のモーメント Λαβ には 2体分布が含まれているため，これらの式は 1体分布で閉じておら
ず，このままでは解くことができない．そこで Enskogは以下の近似を導入した．

• V. Garzó, Granular Gaseous Flows — A Kinetic Theory Approach to Granular Gaseous Flows (Springer

Nature, Cham, 2019).

• D. Enskog, PhD thesis (Uppsala Univ., 1917). See also D. Enskog, Svensk Vet. Akad., Arkiv f Mat., Ast.

och Fys. 16, 1 (1921).

• P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids (John Wiley ＆ Sons, New York, 1978).

f (2)(r1,v1, r1 ± dn̂,v2; t) ≈ g0(φ)f(r1,V1; t)f(r1 ± dn̂,V2; t). (6.53)

ここに g0(φ)は接触時の動径分布関数 (4.23)である．次いで一様剪断による速度の空間変化を用いて

f(r ∓ dn̂,v1; t) ≃ f(V1 ± γ̇dn̂yex, t) (n̂y := n̂ · ey) (6.54)

と書き，分布関数から位置 r 依存性を除く．［引数 v1,V1 の書き分けで 2種類の分布関数 f, f̃ を区別してい

る．符号の反転は式 (6.39)に基づく．］すると

f (2)(r1,v1, r1 ± dn̂,v2; t) ≈ g0(φ)f(V1, t)f(V2 ∓ γ̇dn̂yex, t) (6.55)

となる．

接触応力 (6.35)はこのとき

σc
αβ ≈−

1 + en
4

md3g0(φ)

∫
dV1

∫
dV2

∫
dn̂Θ(V12 · n̂)(V12 · n̂)2n̂αn̂β

× f
(
V1 +

1

2
γ̇dn̂yex

)
f

(
V1 −

1

2
γ̇dn̂yex

)
(6.56)

となる．

6.5.2　 Grad近似
Enskog近似だけでは式 (6.51)は非線形の微積分方程式なので厳密に解けない．そこで簡単な近似として

Grad近似を用いると上手くいくことが，最近の研究により知られるようになった．
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• H. Hayakawa and S. Takada, Prog. Theor. Exp. Phys. 2019, 08301J (2019).

• H. Hayakawa and S. Takada, and V. Garzó, Phys. Rev. E 96, 042903 (2017); [Erratum] 101, 069904(E)

(2020).

• S. Takada, H. Hayakawa, A. Santos, and V. Garzó, Phys. Rev. E 102, 022907 (2020).

• H. Grad, Commun. Pure Appl. Math. 2, 331 (1949).

• V. Garzó, Phys. Rev. E 66, 021308 (2002).

• A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69, 061303 (2004).

• V. Garzó, Phys. Fluids 25, 043301 (2013).

• M. G. Chamorro, F. Vega Reyes, and V. Garzó, Phys. Rev. E 92, 052205 (2015).

• S. Iizuka, S. Takada, and H. Hayakawa, in preparation.

Grad近似では速度分布関数を

f(V , t) ≈ fM(V , t)

[
1− m

2T

(
σk
αβ

nT
+ δαβ

)
VαVβ

]
(6.57)

とおく．ここに

fM(V , t) := n
( m

2πT

)3/2
exp

(
−mV

2

2T

)
(6.58)

はMaxwell分布である．［温度 T を通じた時間依存性を考え得る．］上式 (6.57)はストレスのみが速度分布
の非平衡補正に現れるとした近似であり，この近似はもともと 13モーメント法と呼ばれていた．これに対し
5モーメント法は Chapman-Enskog法として知られ，熱平衡状態から密度，温度，速度場が不均一になった
結果の流体力学的な振舞いを記述できる．しかし剪断粉体系はほぼ空間的に一様なので (また熱流も重要でな
いので)，一様状態をベースに空間ゆらぎを取り入れる Chapman-Enskog法は適していない．そこで我々は
Grad近似を採用する．なお剪断の影響でMaxwell分布が非等方的になることを考慮した理論もあり，そちら
の方がGrad近似よりも精度が高いという報告もある．

• J. F. Lutsko, Phys. Rev. E 70, 061101 (2004).

• S. Saha and M. Alam, J. Fluid Mech, 795, 549 (2016).

2 体分布関数に Enskog 近似 (6.55) と Grad 近似 (6.57) を適用すると，Λαβ ないし Λ∗
αβ =

Λαβ/(nmd
2γ̇3):(6.52)が決まる．その結果は無次元化温度 θの逆数

1√
θ
:=

γ̇d√
T/m

(6.59)

を展開パラメータとした級数

Λ∗
αβ =

6
√
2

π
(1 + en)φg0(φ)θ

3/2
∞∑
n=0

C(n)αβ

(
1√
θ

)n
(6.60)

の形をとる*52．温度の表式 (6.59) ［は式 (6.50)の書き換えに過ぎないものの，それが展開パラメータである

こと］から，剪断率の制御は温度制御と等価であることが見て取れる．また式 (6.60)の展開係数 C(n)αβ は厳密

に求めることができ，級数和 (6.60)は一般化超幾何関数で表せることが最近判明した*53．

式 (6.60)を式 (6.51)に代入すると Π∗
xy, θ,∆θ, δθ で閉じた方程式となり，運動論的ストレス σk

αβ が数値的

に求まる．その結果を式 (6.57)に代入すれば，分布関数が求まる．すると［式 (6.56)に基づき］分布関数を

［数値］積分すれば，接触力に起因する応力 (の無次元化)

Πc∗
αβ := −

σc
αβ

nmd2γ̇2
(6.61)

*52 S. Takada, H. Hayakawa, A. Santos, and V. Garzó, Phys. Rev. E 102, 022907 (2020).
*53 S. Iizuka, S. Takada, and H. Hayakawa, in preparation.
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が求まる．こうして粉体ガスのレオロジーを決定できる．

6.6　剪断粉体ガスの定常レオロジー

本節では数値シミュレーションの結果と前節の理論を比較しながら，剪断粉体ガスの定常レオロジーの性

質を紹介する．6.1節で説明したように，粉体ガスではストレスや温度は常に γ̇2 に比例しており［無次元化

(6.50),(6.52)も見よ］，剪断率と独立である．そこで温度や以下で導入する粘性率，垂直応力差などの，反発

係数 en や体積分率 φに対する依存性を決定することが目標となる．無次元化粘性率は

η∗ := −(Π∗
xy +Πc∗

xy) (6.62)

で定義される．ここで Π∗
xy,Π

c∗
xy は式 (6.52),(6.61)で定義されている．また垂直応力差は

N1 :=
σyy − σxx

P
, N2 :=

σzz − σyy
P

(6.63)

の 2種類が定義される［圧力 P で無次元化］．なお以下に示す一連の図 39,40,41に関する詳細は，文献

S. Iizuka, S. Takada, and H. Hayakawa, in preparation

を見よ．

まずは展開パラメータ 1/
√
θについて，シミュレーション結果と理論を比較しよう (図 39)．［運動論的温度

(6.48)は 6.5.2項末尾の手順で求めた σk
αβ から理論的に求まる．］文献

• A. Santos, V. Garzó, and J. W. Dufty, Phys. Rev. E 69, 061303 (2004)

• S. Takada and H. Hayakawa, Phys. Rev. E 97, 042902 (2018).

では稀薄粉体ガスに対して，

θ =
5π

432

2 + en
(1− en)(1 + en)2(3− en)2

1

φ2
∝ (1− e 2

n )−1 (en → 1) (6.64)

が成り立つことが示されている．しかるに図 39 (a)はこの 1/
√
θ ∝ (1− e 2

n )1/2 という関係が，密度が上がっ

ても en → 0近傍を除けば成り立つことを示している．また図 39 (b)からは，

• φ > 0.2では展開パラメータ 1/
√
θが φにあまり依存しないこと

• en がある程度小さくなると 1/
√
θ > 1となり，

式 (6.60)等の級数展開を有限項で打ち切ることが許されないこと

が読み取れる．さらに図 39で示した範囲 φ < 0.5では理論とシミュレーションが一致しており，粉体の運動

論が有効であることが強く示唆される．

次に粘性率を見てみよう．図 40には粘性率比 η/ηGD をプロットしており，ここに ηGD は文献

V. Garzó and J. W. Dufty, Phys. Rev. E 59, 5895 (1999)

で予測された，自由冷却粒子ガスの理論に基づく粘性率である．我々の運動論は en = 0.99 の場合を除きシ

ミュレーションとよく一致しているのに対し，ηGD は稀薄気体のシミュレーションと大きくずれている．(図

37では対数スケールを用いているため，理論とシミュレーションが見かけ上一致していたに過ぎない．) なお

高密度 φ > 0.5は本稿で展開してきた理論の適用範囲外であり，相関の効果を考慮する必要がある．

105



図 39 展開パラメータ 1/
√
θの (a) en 依存性と (b) φ依存性．(a)のガイドラインは (1− e 2

n )
1/2 を示し

ている．［本稿では教科書から図を採った．］

図 40 粘性率比 η/ηGD の (a) en 依存性と (b) φ依存性．［本稿では教科書から図を採った．］

最後に垂直応力差 (6.63)を図 41に示す．6.1節の問題提起に対してノンゼロの垂直応力差 N1, N2 が得ら

れており，稀薄極限で N1 は大きな値をとっている．また理論は en = 0.70の場合を除き，シミュレーション

結果を概ね定性的に再現しているものの，定量的な結果を得たとは言い難い．この辺りが本稿の運動論の限界

である．文献

S. Saha and M. Alam, J. Fluid Mech. 795, 549 (2016)

の理論はシミュレーションと，さらに良好な一致を示している．

6.7　運動論の慣性サスペンションへの応用

6.7.1　ランジュバン方程式とボルツマン方程式

ここまで紹介した運動論を，粒子間衝突が重要な慣性サスペンションの記述に応用できる．慣性サスペン

ションとは，粒径が数十 µm程度のエアロゾル粒子を典型例とし，沈降までの間に気体 (流体)の影響を受け

ながら浮遊し，時折，粒子同士の衝突を行う粒子系である*54．粒子同士が衝突の際に凝集合体して大きくな

*54 D. L. Koch and R. J. Hill, Annu. Rev. Fluid Mech. 33, 619 (2001)
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図 41 様々な en に対する (a) N1 および (b) N2 の en 依存性．［本稿では教科書から図を採った．］

る場合もある．しかし環境の温度が高いと，その効果は比較的小さい．そこで本稿では粒子合体の効果は無視

する．また高密度の粒子系では接触相互作用の詳細がマクロな物性に効くことが知られている．しかし気体領

域の統計力学を論じる上で，それはあまり重要でないと期待し，接触時間を無視できるハードコア粒子の系を

考える (その衝突ルールは式 (6.2),(6.3))．

流体中に粒子が数密度 nで分散している場合を考え，粒子の粒径を d，質量を mとする．またこれまで通

り剪断方向を x，速度が変化する方向を y として，粒子系が一様な剪断率 γ̇ の影響を受けて運動しているとす

ると，剪断速度は γ̇yex と表される (ex は x方向の単位ベクトル)．ここで pk を粒子 k の特性運動量 (6.36)

とすると，［式 (6.38)で γ̈ = 0とおいた］運動方程式は

dpk
dt

= −ζpk + F imp
k +mξk (6.65)

と書けるだろう．ただし簡単のために流体から受ける抵抗力は速度 vk に比例する形 −ζvk で表されるとし
た．［剪断速度を流体が持つ速度と考えれば，式 (6.39)の特性速度 vk = pk/mは流体静止系における粒子の

速度である．］また F imp
k は衝突によって粒子に働く撃力である．さらに ξk は流体から受ける揺動力であり，

その平均はゼロあり，相関は揺動散逸関係式

⟨ξk,α(t)ξl,β(t′)⟩ =
2ζTenv
m

δklδαβδ(t− t′) (6.66)

を満たすものとする (Tenv は流体の温度)．式 (665–66)は Langevin方程式に他ならない．

ここで剪断の影響を受けた稀薄な慣性サスペンション系は分布関数 f(V , t)の発展方程式を(
∂

∂t
− γ̇Vy

∂

∂Vx

)
f(V , t) = ζ

∂

∂V
·
[(

V +
Tenv
m

∂

∂V

)
f(V , t)

]
+ J [V |f, f ] (6.67)

と書こう．ただし我々は稀薄なガスを考えているので，上式 (6.67)では稀薄極限をとって，式 (6.12)の衝突

積分 JE を Boltzmann方程式の衝突項の形

J [V1|f, f ] = d2
∫

dV2

∫
dn̂Θ(n̂ · V12)(n̂ · V12)

{
1

e 2
n

f(V ′′
1 )f(V ′′

2 )− f(V1)f(V2)

}
(6.68)

で与えている (V ′′
1 ,V

′′
2 は衝突前の速度)［6.5.1項に従えば g0(φ)を掛ける］．上式 (6.67)は次のように動機

付けられる．
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• 粒子同士の衝突［と剪断］を無視すると，揺動力のみを受ける粒子に対する Langevin方程式は，分布

関数に対する Fokker-Planck方程式を与え*55．対応して上式 (6.67)で J = 0および γ̇ = 0とおくと

Fokker-Planck方程式が再現される．

• 揺動力がない場合を考え上式 (6.67)で ζ = 0とおくと，

剪断系の Boltzmann方程式 (6.45)が再現される．

ここでも Boltzmann方程式の近似解として式 (6.57)を採用する．ここで Grad近似 (6.57)における

T :=
1

3n

∫
dV V 2f(V ) = −

σk
xx + σk

yy + σk
zz

3n

は粒子の運動論的温度であり，流体の温度 Tenv とは一般に異なることに注意する．近似的な分布関数 (6.57)

を用いて σk
αβ の時間発展方程式を求めると，σ

k
xy と T，さらに異方的な温度あるいは垂直応力差に対する連立

方程式が導かれ，その定常解を容易に求めることができる*56．

実験で流れを特徴付ける最も重要な量として，式 (3.18):

η = σxy/γ̇ (6.69)

で定義される粘性率に興味が持たれる．ただし稀薄気体では σxy は σk
xy である．水のような単純な液体では

粘性率は γ̇ によらずに一定であるのに対し，粒子が分散している液体では一般に粘性率は γ̇ に依存する．慣

性サスペンションでは粘性率が γ̇ とともに増加する，シアシックニングと呼ばれる現象が観測できる．また不

連続シアシックニングが生じる際に垂直応力差が大きくなるのは，濃厚コロイドサスペンションで観測される

不連続シアシックニングの場合と同じである*57．

図 42は式 (6.65),(6.66)のシミュレーションを行った結果と，Boltzmann方程式の近似解 (6.67),(6.68)の

近似解 (6.57)に基づいて計算した粘性率を，フィッティングパラメータ等を用いずに直接比較した結果であ

る*58．シミュレーション結果と解析的に求めた粘性率にはほとんど差が認められない．また en < 1の場合に

は剪断率が大きい極限で，粘性率はよく知られた粉体の Bagnold則 η ∝ γ̇［式 (6.1)］*59に漸近することも読

み取れる．なお剪断率が弱い極限での粘性率は nTenv/(2ζ) に比例するが，en < 1の場合には非自明な比例因

子 ( ̸= 1)が付く．いずれにせよ粘性率は剪断率に依存しない低剪断領域から剪断率に比例 (en = 1の場合は

γ̇2 に比例)する領域にクロスオーバーする．稀薄慣性サスペンションではこの遷移が不連続に生じ，平衡系の

一次相転移のようにヒステリシスを持つ．これは粒子間摩擦が重要な慣性のない濃厚なコロイドサスペンショ

ンで観測される，1.3.2項で説明した不連続シアシックニングとほぼ同じ現象である．濃厚サスペンションの

不連続シアシックニングは複雑な多体効果が無視できず完全な理論的な説明はないのに対し，稀薄な慣性サス

ペンションはそれぞれの相互作用が分離できて，比較的簡単に統計力学的理論に基づき粘性率の不連続変化を

説明できた点は特筆に値する．

*55 早川尚男，非平衡統計力学 (サイエンス社 SGCライブラリ 54，2007).［他にも例えば文献 [5, § 3.2.3]を参照．］
*56 H. Hayakawa and S. Takada, Prog. Theor. Exp. Phys. 2019, 08301J (2019).
*57

• C. D. Cwalina and N. J. Wagner, J. Rheol. 58, 949 (2014).

• R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Phys. Rev. Lett. 111, 218301 (2013).

• E. Brown and H. M. Jeager, Rep. Prog. Phys. 77, 046602 (2014).

*58 H. Hayakawa and S. Takada, Prog. Theor. Exp. Phys. 2019, 08301J (2019).
*59 R. A. Bagnold, Proc. R. Soc. London A 225, 49 (1954).
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図 42 稀薄慣性サスペンションの無次元化された粘性率 η∗ = ηζ/(nTenv) を γ̇∗ = γ̇/ζ の関数としてプ

ロット．0.9と 1.0はそれぞれ反発係数．ここで反発係数 0.9の場合における白抜き (塗りつぶし)は剪断

率を徐々に上昇 (減少)させた場合に対応する．［本稿では教科書から図を採った．］

6.7.2　有限密度系への拡張

Boltzmann 方程式は稀薄気体に対してのみ有効である．それを有限密度系に拡張する 1 つの試みとして，

ここではハードコア粒子系に対してのみ有効な古典的 Enskog近似を紹介する*60．Enskog近似ではボルツマ

ン方程式の衝突積分 (6.68)を

JE[V1|f, f ] =g0d2
∫

dV2

∫
dn̂Θ(n̂ · V12)(n̂ · V12)

×
[

1

e 2
n

f(V ′′
1 )f(V ′′

2 + γ̇dn̂y)− f(V1)f(V2 − γ̇dn̂y)
]

(6.70)

に置き換える［6.5.1項］．有限密度系の場合，ストレスは接触力の寄与 (6.56)を考慮する必要がある．その結

果，有限密度系の粘性率は
η = σxy/γ̇, σxy = σk

xy + σc
xy (6.71)

となる．なお理論では 6.5.2項で紹介した Grad近似も組合せる．

図 43の結果は体積分率 φ = 0.4の理論とシミュレーションの結果である．理論の結果はフィッティングパ

ラメータなしにシミュレーションの結果を再現している．また著しいことに，γ̇ に対して不連続に変化してい

た粘性率は，有限濃度系では連続的に変化するようになった．これは連続シアシックニングと呼ばれる現象に

対応する．理論とシミュレーションの一致は φ = 0.5でも比較的良好である．Alder転移 (ハードコア球の系

の結晶化)*61が φ ≈ 0.49 で起こることを考えると，Enskog 近似の有効性は予想以上であると言わざるを得

ない．

*60

• H. Hayakawa and S. Takada, and V. Garzó, Phys. Rev. E 96, 042903 (2017); [Erratum] 101, 069904(E) (2020).

• S. Takada, H. Hayakawa, A. Santos, and V. Garzó, Phys. Rev. E 102, 022907 (2020).

*61 B. J. Adler and T. E. Wainwright, Phys. Rev. 127, 359 (1957).
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図 43 有限密度 (φ = 0.4) において慣性サスペンションの無次元化された粘性率 η∗ = ηζ/(nTenv) を

γ̇∗ = γ̇/ζ の関数としてプロット．0.9と 1.0はそれぞれ反発係数．［本稿では教科書から図を採った．］

一方で慣性サスペンションの理論は，一般の濃厚サスペンションの実験で見られる興味深い現象の解明に結

び付いていない．実際，慣性のないコロイドでは典型的には，低密度で連続シアシックニングが，高密度で不

連続シアシックニングが見られる*62．ここでの統計力学的な理論は，これとは逆の結果である．また慣性サ

スペンションの不連続シアシックニングは比較的低密度で連続シアシックニングに移行してしまうことも分

かっている．何が不一致の原因であろうか．実は慣性のないコロイドでは流体力学的相互作用が複雑であり，

流体からの抵抗はスカラーで表現できず，粒子配置に強く依存した抵抗係数行列になる．さらにその抵抗係数

行列は粒子が接触する距離で発散することも知られており，基本衝突はできない．しかし実際のコロイドの粒

子形状がフラットではないために辛うじて慣性効果なしに有限時間の接触があり，その際の粒子間摩擦や回転

の効果が重要であるということが知られている．逆に言えばハードコア系の衝突ルールに摩擦や回転の効果を

入れただけでは不連続シアシックニングは生じないことも知られている．

なお，慣性サスペンションでの不連続シアシックニングは古くから理論的に研究されているが，実験的研究

は進んでいない．その理由として，エアロゾルを封入して高剪断状態を実現する実験的困難もさることなが

ら，(運動論的)温度が不連続シアシックニングを境に急激に上昇すると，環境の温度にも影響を与えて，サス

ペンション粒子が溶けてしまう等の困難が考えられる．

6.7.3　ペンバ効果

今までは定常状態のみを論じていたが，ここで慣性サスペンションとその理論を用いて，一見不思議な緩

和現象を論じることが可能であることを紹介しよう．1960年代半ばにタンザニアの中学生であったMpemba

(ペンバ)は調理の授業中，アイスクリームミックスを熱いまま凍らせたところ，冷ましてから凍らせたものよ

りも先に凍ることに気付いた．この結果は物理学者の Osborne (オズボーン)の助けを借りて 6年後に論文と

*62

• C. D. Cwalina and N. J. Wagner, J. Rheol. 58, 949 (2014).

• R. Seto, R. Mari, J. F. Morris, and M. M. Denn, Phys. Rev. Lett. 111, 218301 (2013).

• E. Brown and H. M. Jeager, Rep. Prog. Phys. 77, 046602 (2014).
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図 44 (a)平衡からの温度 Teq(t)の緩和 (実線)と剪断を加えた非平衡定常状態からの温度 Tneq(t)の緩和

(破線)の模式図．(b) ∆T := Teq(t) − Tneq(t)の緩和 3態．上図は本文で述べた正常Mpemba効果，中

図はオーバーシュートによって逆に ∆T < 0となる異常Mpemba効果，下図は時間発展のうちに両者が

生じる例．［本稿では教科書から図を採った．］

して出版された*63．これに類似した現象は遥か昔から報告されており，Mpembaの発見は再発見と呼ぶべき

であろう．しかしその主張は直観に反するばかりか再現性に乏しく，その後も正否について激しい議論を引き

起こしている．

近年，Mpemba効果の見直しが進み，多くの研究が報告されるようになった*64．Mpembaの実験では凍結

が介在したが，近年の多くの研究では凍結がなくても類似の現象が観測できることも分かってきた．慣性サス

ペンションを用いた議論もそれにならい，温度の緩和現象のみを論じる*65．

系の不均一性を無視すれば，en = 1の慣性サスペンション系の温度 T が従う方程式は

cV
dT

dt
=
γ̇

n
σxy + 2cV ζ(Tenv − T ) (6.72)

である．ここに cV は定積比熱である．上式 (6.72)の右辺第 2項は環境の温度 Tenv に緩和率 2ζ で緩和する

ことを表している．興味深いのは粘性発熱と呼ばれる右辺第 1 項である．この項はかき混ぜることでサスペ

ンション液体の温度が上がることを示している．平衡 f(V ) = fM(V )では σxy はゼロであり，粘性発熱がな

い．したがって，あらかじめかき混ぜて定常化したサスペンションと，それよりやや高温の平衡のサスペン

ションを用意しておくと，平衡で用意したサスペンションは粘性発熱がないために早く温度低下がおき，温度

逆転が生じる (正常Mpemba効果；図 44 (a))．これがペンバ効果の本質である．また温度変化に慣性があれ

ばオーバーシュートが起き，さらにそこからの揺り戻しとしてもう 1回温度逆転 (異常Mpemba効果)があっ

てもよいことも想像がつく．以上の事情を図 44 (b)に模式的・定性的に示す．

慣性サスペンションの理論を用いると，以上の説明を定量的に行える．図 45 では無次元化した温度

θ = T/Tenv を用いて，上記 2つの系の温度差∆θ := θFQE(τ)− θFS(τ) の時間発展をプロットしており，時間

*63 E. B. Mpemba and D. G. Osborne, Phys. Educ. 4, 172 (1969).
*64

• A. Lasanta, F. Vega Reyes, A. Prados, and A. Santos, Phys. Rev. Lett. 119, 148001 (2017).

• Z. Lu and O. Raz, Proc. Natl. Acad. Sci. USA 114, 5083 (2017).

• A. Kumar and J. Bechhoefer, Nature (London) 584, 64 (2020).

*65 S. Takada, H. Hayakawa, and A. Santos, Phys. Rev. E 103, 032901 (2021).
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図 45 ∆θ := θFQE(τ)− θFS(τ)の時間発展．実線は理論，データ点はシミュレーションの結果．［本稿で

は教科書から図を採った．］

は τ = ζtと無次元化している．ただし添字が FQEと FSはそれぞれ反発係数 en ≤ 1のサスペンションを，

• 剪断なしで熱浴温度 Tenv から緩和させたもの (from quasi-equilibrium)と，

• 剪断による非平衡定常状態から緩和させたもの (from steady)

を表す．また τNME は正常Mpemba効果が生じる時間，τAME は異常Mpemba効果が生じる時間である．図

45から分かる通り，理論とシミュレー ションの一致はフィッティングパラメータなしでほぼ完璧であり，理

論的にMpemba効果を説明できたことになる．

これまで見てきたように，統計力学的な粉体流あるいは慣性サスペンションの理論は定量的に正しく，様々

な非自明な物理現象を記述できる．なお近年の Mpemba効果の研究の動向としては，量子 Mpemba効果を

論じた論文を中心に，論文数が急激に増加している．それらの研究は量子コンピュータの研究と結び付けられ

て論じられており，数年後にMpemba効果の描像が一新している可能性がある．

6.8　本章のまとめ

全文を引用する：

本章では気体分子運動論を用いて粉体流の近似的記述が可能であるかを，特に単純剪断流を中心に説

明した．また最後の節ではその運動論を慣性サスペンションのレオロジーへ応用してみた．ここで論じ

た状況は重力の影響も境界の影響も無視しており，過度に理想化されたものであるが，フィッティング

パラメータなしにシミュレーションの結果を再現できることは大きな理論の成果と言える．ここで説明

した理論を足掛かりにしてより現実的な状況の粉体流の理論的記述に取り組むべき段階に来ている．
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第 7章　ジャミング転移

7.1　ジャミング転移の概略

本章では 1.3節で導入したジャミング転移の理論を簡単に紹介しよう．なお本章では簡単のために，主に粒

子間摩擦のない球状粒子を考える*66．

このとき重要な観測量は，1粒子あたりの接触点数 Z，ジャミング転移を起こす密度 (体積分率 φJ)および

圧力 P だと予想される．2次元系では結晶化を避けるために粒径の分散を導入する必要がある*67．このよう

な摩擦のない球形粒子系のジャミング密度は，球のランダム最密充填であると信じられている．しかし実際に

そうであるのかについての合意はなく，そもそも一意にジャミング転移点が決まるのかをめぐっても論争があ

る*68．この辺りの問題にの包括的な教科書やレビューとしては文献

• S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties

(Springer-Verlag, New York, 2002).

• S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010).

を参照せよ．また最近の論文

• R. Blumenfeld, Phys. Rev. Lett. 127, 118002 (2021).

• A. Zaconne, Phys. Rev. Lett. 127, 118002 (2021).

では，ランダム充填の密度を近似的に求めて注目を受けた．しかしそこで求められた値は，数値計算等で信じ

られている値からかなりずれている点に注意が必要である．実は後で示すように，第 5章［正しくは第 4章

か］での液体論とレプリカ理論を組合せて，3次元のジャミング密度を決めることができ，さらにジャミング

点を挟んでの圧力の出現も説明できる*69．なおこの理論は，論文

G. Parisi and F. Zamponi, Rev. Mod. Phys. 82, 789 (2010).

で紹介されるような，1ステップレプリカ対称性の破れに基づいている点に注意が必要である．

またジャミング点直上 (体積分率が φ = φJ となるとき) におけるハードコア粒子の接触点数に関しては，

Maxwellによる以下の議論がよく知られている*70．D 次元空間にばらまかれた摩擦のない N 個の球形粒子

を考えよう．このとき 1粒子あたりの接触点数を Z とすると，全接触点数は Nn := NZ/2である［各接触点

は 2粒子に共有されている］．粒子が動けないときには，運動の全自由度 En := ND は拘束条件 (接触点の数

*66 ジャミング転移の精密な実験はしばしば 2次元的な光弾性円盤を用いて行われる．しかしジャミング点以上での重力の影響は，単
に応力鎖から差し引きできることを踏まえると，3次元の箱の中に粒子を詰めて実験を行ってもよい．またしばしばコロイドによ
る実験も行われる．その場合は 1.3.3項で述べたシアジャミングを調べたものが多い．最近の研究では変形可能な粒子として細胞
のジャミングを論じたものが増えている．

*67 3次元系では単分散系でも結晶化を避けてジャミング転移を起こすことは可能である．
*68 S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000).
*69 L. Berthier, H. Jacquin, and F. Zamponi, Phys. Rev. E 84, 051103 (2011).
*70

• J. C. Maxwell, Trans. R. Soc. Edinburgh 26, 1 (1870).

• S. Alexander, Phys. Rep. 296, 65 (1998).

• A. Baule, F. Morone, H. J. Herrmann, and H. Makse, Rev. Mod. Phys. 90, 015006 (2018).

113



だけある)とバランスし，En = Nn が成り立つはずである．この状態を等静 (isostatic)状態と呼び，この場

合の接触点数は
Zsmooth
iso = 2D (7.1)

と求まる．［D = 1, 2, 3 のいずれに対しても，球の正方格子状の配置は上式 (7.1) を満たしている．］他方で

ジャミング点以下の密度 φ < φJ では接触はなく Z = 0なので，接触点数に関しては転移は不連続となる．同

様に粒子間摩擦がある場合にも，接触点における接線方向の数 Nt := N(D − 1)Z/2と，トルクバランスの数

Et := ND(D − 1)/2［各粒子ごとに DC2 = D(D − 1)/2通りの面内での回転を考え得る］を考慮し，再び自

由度と拘束条件数を Nn +Nt = En + Et と等置すると，接触点数

Zfric
iso = D + 1 (7.2)

を得る．したがって接触点数はジャミング点でやはりゼロから有限値 (7.2)に不連続に変化する．ジャミング

点より高密度になると，接触点数は等静状態での値から徐々に増加する．

ジャミング点より上でのエネルギーや圧力は，以下のように簡単な式に従うと考えられる*71．1粒子あたり

のエネルギー e(φ)が
e(φ) ∼ (φ− φJ)

α (7.3)

と書けるとしよう.．熱力学的関係式から，圧力は

P = n2
de

dn
∝ φ2 de

dφ
∝ (φ− φJ)

α−1. (7.4)

ここで上式 (7.3–4) における指数 α は，接触した際のポテンシャルによって決まることを説明する．圧力の

公式 (4.7) で T → 0 の極限をとると第 1 項は消え，また第 2 項で粒径 d にピークを持つデルタ関数の分布

g2(r) ∼ δ(d − r) を仮定すると，［P ∼ ϕ′(r → d) を得る．(比例記号 ∝,∼ を併用し，近似記号 ≈ と区別す
る．) これを上式 (7.4)と等置すると］ポテンシャル ϕ(r → d)による力

ϕ′(r → d) ∼ (φ− φJ)
α−1 (7.5)

を得る．しかるに r(φ)を粒子間距離とすると［1粒子は r(φ)D 程度の体積を占めるので r(φ)Dφ = dDφJ で

あり］，r(φ) ≈ d(φJ/φ)
1/D が成り立つ．このとき ∆φ := φ− φJ とおいて，教科書の説明を補足しつつまと

めると，ジャミング点近傍で

r(φ) ≈ d
(
1 +

∆φ

φJ

)−1/D

≈ d− 1

D

∆φ

φJ
, ∴ ξ := d− r(φ) ≈ 1

D

∆φ

φJ
∼ ∆φ = φ− φJ

となる．よって上式 (7.5)は ϕ′(d) ∼ ξα−1 を意味するので，αはポテンシャル ϕ(r) ∝ (d− r)αΘ(d− r)の指
数と一致する．

7.2　レプリカ対称性の破れ

7.2.1　レプリカ対称性の破れとは何か

本稿ではジャミング転移をレプリカ対称性の破れと捉える．そこでまずレプリカ対称性の破れを説明する．

レプリカ対称性の破れはまた 2021 年の Parisi (パリシ) のノーベル物理学賞受賞の主たる業績となってい

る*72．

*71 C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E 68, 011306 (2003).
*72
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図 46 三角格子上の反強磁性 Isingモデルの模式図．右下のスピンの向きがアップとダウンのいずれでも

エネルギーは変わらない．

反強磁性 Isingモデルを例に採ろう．Isingスピン Si = ±1が隣接サイトのみとカップリングする場合，J
をカップリングの強さとして，ハミルトニアンは

H = J
∑
⟨i,j⟩

SiSj (7.6)

と表される．ただし ⟨i, j⟩ はスピン i, j が隣接サイトにあることを意味する．このとき隣接サイトのスピン

が逆向きとなる状態が基底状態となる．［強磁性の場合とハミルトニアン (7.6)が逆符号であることに注意す

る．］ところが図 46のように三角格子上にスピンを配置する場合には，左下のスピンをアップ (上向き)，上の

スピンをダウン (下向き)とすると，右下のスピンの向きはアップとダウンのいずれでもエネルギーは変わら

ない．このようにスピンの望ましい向きが決まらない状態をフラストレーションと呼ぶ．一般にフラストレー

ションがあるとエネルギーの縮退が無限に現れる．

このようなフラストレーションを持ちランダムなスピン系を，Edwards (エドワーズ) と Anderson (アン

ダーソン)はスピングラスと名付け，ハミルトニアン

H = −
∑
⟨i,j⟩

JijSiSj (7.7)

で記述した．ただしカップリング変数 Jij は平均 Jij = 0，分散 J 2
ij = Kij のランダム変数であり，ここで J

は異なるアンサンブル間での J の平均を表す*73．

温度 T の等温系では，分配関数を Z[J ]として，Helmholtzの自由エネルギー

F = F [Jij ] = −T lnZ[J ] (7.8)

を求めることに興味が持たれる．［J := {Jij}と推察される．］ところが最右辺における分配関数の対数のアン
サンブル平均は計算が困難である．そこで恒等式

lnZ = lim
m→0

Zm − 1

m
(7.9)

• Scientific Background on the Nobel Prize in Physics 2021, http://www.nobelprize.org/uploads/2021/10/

advanced-physicsprize2021.pdf.

• G. Parisi, Rev. Mod. Phys. 95, 030501 (2023).

*73 S. F. Edwards, and P. W. Anderson, J. Phys. F 5, 965 (1975).
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を踏まえると［Zm = em lnZ = 1 +m lnZ +O(m2)による］，

F ∼ lim
m→0

Z[J ]m − 1

m
(7.10)

を計算すれば充分であることに Edwardsは気付いた．［この公式自体は導き方から整数mに限らず成り立つ．

一方で］系の異なる複製 (レプリカ)をm個用意すれば，上式 (7.10)右辺における分配関数のべき乗を計算で

きる．この場合 mは整数であるにも関わらず，m → 0の極限をとって上式 (7.10)の評価を試みる手法をレ

プリカトリックという．

ところがレプリカを用いた計算を無限次元の平均場モデルに適用すると，エントロピーが負になる等の非物

理的な結果が導かれることが分かった．これは各レプリカを等価かつ独立と仮定したためであり，実際には

あたかも実空間に置かれたスピン間のように，異なるレプリカ間の相互作用が生じる相転移が起きることを

Parisiは見抜いた*74．このことを見るために，N をスピンの数，⟨Si⟩α をレプリカ αでのスピン Si の平均と

して，オーダーパラメータをレプリカ間のオーバーラップ

qαβ :=
1

N

∑
i

⟨Si⟩α ⟨Si⟩β (7.11)

で導入しよう．レプリカ同士が独立ならば qαβ は対角行列であるのに対し，レプリカ対称性の破れ (replica

symmetry breaking; RSB)が起きると非対角要素もノンゼロの値を持つ．そして確率 wα ∝ exp(−Fα/T )に
よる分布

PJ (q) :=
∑
α,β

wαwβδ(q − qαβ) (7.12)

のレプリカ平均 P (q) = PJ(q)は，q = 0の周りにピークを持つ状態から，q ̸= 0にダブルピークを持つ状態

へ転移する (図 47)*75．［上式 (7.12)は
∫
qPJ(q)dq =

∑
α,β wαwβqαβ で qαβ の平均を与える確率分布となっ

ている．］このとき異なるレプリカは相関を持つので

P (q1, q2) := PJ(q1)PJ(q2) ̸= P (q1)P (q2) (7.13)

となる．

この結果は次のように解釈できる．ここで導入したオーダーパラメータ qαβ は異なるレプリカ間の類似性

を表し，P (q)はその類似性の頻度分布を表す．多谷構造を持つランダム系では，qは様々な値を取り得るので

P (q)が連続的な分布になる．無秩序であれば異なるレプリカの間に相関はなく，P (q)は q = 0に鋭いピーク

を持つはずである．したがって RSBは，異なるレプリカが独立な状態から類似性を持つ状態への相転移と考

えられる．

7.2.2　レプリカ対称性の破れとジャミング転移の関係

粒子が動き回る液体から，動きが凍結されるガラス状態までの記述に RSBを用いるのは自然である*76．実

際，粒子軌道がエルゴード的でエネルギー的に安定な状態が 1つしかない液体状態から，エネルギー極小状態

*74

• G. Parisi, Phys. Lett. A 73, 203 (1979).

• G. Parisi, Phys. Rev. Lett. A 43, 1754 (1979).

*75 G. Parisi, arXiv:cond-mat/0205387.
*76 粒子系が結晶化せずガラス化するには，粒径の分散に伴う配置のランダムネスが常に必要である．また，そうした粒子配置のガラ
ス化にはフラストレーションが常にある．
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図 47 4 次元隣接相互作用をするスピングラスの，異なる J を持つ多くのサンプルにわたる平均

P (q) = PJ(q)の振舞いの模式図．［本稿では教科書から図を採った．］

が多数現れ，それらが互いに遷移できない状態*77への転移── 1-ステップでのレプリカ対称性の破れ (1RSB)

──がガラス転移と考えられる．ここで P, n, T をそれぞれ圧力，粒子数密度，温度として，無次元化圧力

p := P/(nT )を導入しよう．このとき 1RSBでは液体の pliq からガラス状態への pglass への転移が φ = φG

で生じる．1/p = (nT )/P → 0での振舞いは T → 0での圧力を論じることと等価なので，この転移をそのま

まジャミング転移と見なせる．この描像ではガラス転移とジャミング転移は基本的に同一である．

実際には φ > φG でも液体状態は準安定な分枝として存在し得る．そこに微小なゆらぎを加えると，準安定

状態は壊れてジャミング状態へ移行する無数の分枝が存在する (図 48参照)．さらに液体状態から 1/p→ 0の

ジャミング状態に移行する間に，1つのガラス状態が無数のガラス状態へ転移する Gardner (ガードナー)転

移が生じると信じられている*78．Gardner転移は 1RSBの状態から完全にレプリカ対称性の破れた状態への

転移である．

しかし本稿ではジャミング転移を，1/p → 0 での液体状態から固体状態への 1RSB と見なしているので，

Gardner転移を論じる必要はない．ここでは文献

L. Berthier, H. Jacquin, and F. Zamponi, Phys. Rev. E 84, 051103 (2011)

に従い，1ステップレプリカ対称性の破れとして，ガラス最密充填 (glass-close-packing)密度 φGCP で生じる

ジャミング転移を説明する．この論文の特徴は，通常次元無限大で計算されるジャミング転移のスケーリング

を，3次元の液体論で用いられる HNC近似 (第 5章［正しくは第 4章］)と組合せたことである．ここでは

HNC近似を採用せず，式 (422)を用いて，3次元の液体論の成果を部分的に取り入れて説明する*79．

*77 相空間上でそれぞれの極小状態が連結していない状態．
*78

• F. Zamponi, Theory of Simple Glasses: Exact Solutions in Infinite Dimensions.

• E. Gardner, Nucl. Phys. B 257, 747 (1985).

• P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Ann. Rev. Cond, Matt. Phys. 8, 265 (2017).

• L. Berthier, G. Biroli, P. Charbonneau, E. I. Corwin, S. Franz, and F. Zamponi, J. Chem. Phys. 151, 010901

(2019).

*79 K. Suzuki and H. Hayakawa, unpublished (2015).
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図 48 ハードコア極限での相図．上側の実線は平衡での状態方程式である．過冷却液体はジャミング相に

近づく際に Gardner転移の線を横切る (点線)．［本稿では教科書から図を採った．］

7.3　レプリカ理論によるジャミング転移の記述

7.3.1　平衡統計力学

まずは平衡統計力学による粒子系の記述をまとめる．簡単のため粒子は球形であり粒径は非分散とし，相互

作用は調和ポテンシャル

ϕ(r) = ϵh

(
1− r

d

)2
Θ(d− r) (7.14)

で与える*80．β := 1/T を逆温度，fを 1粒子あたりの自由エネルギー，N (f)を自由エネルギー状態 fの準安

定状態の数として，分配関数は

ZN =

∫
dfN (f)e−βNf =

∫
dfe−Nβ[f−TΣ(f)] (7.15)

で与えられる．ただし［通常の分配関数の定義と異なりエネルギーの代わりに自由エネルギーを用いており］，

最右辺では複雑さ (complexity) Σ(f) := lnN (f)/N を定義した．

指数の因子 f− TΣ(f)の鞍点 f∗(T, φ)を用いて［ZN ≈ e−Nβ[f
∗−TΣ(f∗)] とおくと］，1粒子あたりのエント

ロピーは

S :=
1

N
lnZN ≈ Σ(f∗(T, φ))− βf∗(T, φ) (7.16)

と表され，f∗(T, φ)は［指数の f微分がゼロになる条件］

β =
∂Σ

∂f
(f(T, φ)) (7.17)

を満たす．［定義式 (7.16)に従えば Σ(f∗)はエントロピーよりもむしろエネルギーに同定される．しかし］粒

子間接触が生じたジャミング点では圧縮はないので，エネルギーは基本的にゼロである．［ここから式 (7.16)

第 2辺における自由エネルギーの対応物 (の −1/T )倍をそのままエントロピー S と定義することが動機付け

*80 本来，3次元では接触力は Hertz型となる［3.7節］．
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られる．］ガラス転移が起きる温度 TK(φ)は Kauzmann (カウツマン)温度と呼ばれ，その点では複雑さが消

える：
Σ(f∗(TK(φ), φ)) = Σ(fmin) = 0. (7.18)

［これは状態数 N (fmin) = 1 を意味する．］ただし fmin = f∗(TK(φ), φ) は自由エネルギーの極小値である．

T < TK(φ)では常に自由エネルギーは fmin であり，Σ(f∗) = 0が成り立つ．

7.3.2　レプリカ液体論の一般的枠組み

対称性の破れに伴いレプリカ秩序変数が 0 から有限になる相転移を，レプリカ液体論の枠組みで論じる．

しばらく粒径と［式 (7.14) の］エネルギースケールをそれぞれ d = 1, ϵh = 1 とおく単位系を採用する．

Edwards-Andersonの秩序変数の代わりに，レプリカの数mそのものの変化で相転移を特徴付けられる*81．

• m = 1の液体状態から，有限温度でのm ̸= 1への動的相転移をガラス転移と見なせる．

• T → 0のとき，レプリカトリックではm→ 0の極限を考えるのに対し，

1RSBによりm ̸= 0の値をとる相転移が実現すると期待される．これをジャミング転移と見なす．

弱く相互作用しているm個のレプリカから成る系を考えよう．レプリカ系の分配関数は［式 (7.15)第 2辺

で N → mN と置き換えれば］

Z
(m)
N :=

∫
dfe−Nβ(mf−TΣ(f)) (7.19)

と書ける．このとき［式 (7.16–17)に対応する修正を施すと］，エントロピー S(m;T, φ)と複雑さ Σ(f)は

S(m;T, φ) =Σ(f∗(m;T, φ))− βmf∗(m;T, φ), (7.20)

βm =
∂Σ

∂f
(f∗(m;T, φ)) (7.21)

を満たす．2式 (7.20–21)を組合せると，Σと f∗ の発展方程式

Σ(m;T, φ) =−m2 ∂(S/m)

∂m
= S −m ∂S

∂m
, (7.22)

f∗(m;T, φ) =− T ∂S
∂m

(7.23)

を得る［本稿次項で確認］．一方，我々の仮定では複雑さ

Σeq(φ) := lim
T→0

Σ(m = 1;T, φ), ΣHS
0 (φ) := lim

T→0
Σ(m;T, φ)

［ただし HSはハードコア球 (hard sphere)を表す (教科書 p.141)］は φK, φGCP で

Σeq(φK) = 0, ΣHS
0 (φGCP) = 0 (7.24)

となる．

ガラス状態では相空間の状態が凍結されるので，複雑さが Σ(f) = 0となると考えられる．式 (7.22)とより

ガラス状態では ∂(S/m)/∂m = 0が成り立つため，S/mがmに対して極小値

Sglass :=
∂S(m∗(T, φ);T, φ)

m∗(T, φ)
= −βfglass(T, φ) (∵ 式 (7.20)) (7.25)

*81 R. Monasson, Phys. Rev. Lett. 75, 2847 (1995).
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をとると考えられる．ただしm∗ は ∂(S/m)/∂m = 0を満たすmの値である．m∗ が期待される値 (液体状態

ではm = 1，レプリカトリックを用いる低温極限ではm = 0)と異なる場合，相転移が起きていると見なす．

再び無次元化圧力 p := βP/n を導入しよう．熱力学的関係式 P = −n2∂f/∂n ［より p = −βn∂f/∂n =

−βφ∂f/∂φとなること］，およびガラス状態で成り立つ式 (7.25)から，

pglass = −φ
∂Sglass
∂φ

. (7.26)

高密度では第 4章で紹介した液体論は破綻することが知られている．しかるに異なるレプリカが微妙に異な

る位置にエネルギー極小を持つ．そこで極小位置のオーバーラップから液体論の破綻の理解を試みるのが，レ

プリカ理論のアイデアである．これを定式化するために，液体粒子はサイズ Aのケージに閉じ込められてお
り，異なるレプリカ間には有効ポテンシャル ϕeff が働くと考える．

異なるレプリカに属する m 個の［同一］粒子から成る m 粒子系を考えよう．［共通の中心位置X 周りの

Gauss分布をX で積分すると］m体分布は

ρ(x1, · · · ,xm) =

∫
d3X

m∏
a=1

1

(2πA)3/2
e−(xa−X)2/(2A) (7.27)

と書ける．ここでレプリカ 1に属する粒子間に働く有効ポテンシャル ϕeff を

e−βϕeff (x1−y1) :=e−βϕ(x1−y1)

⟨
m∏
a=2

e−βϕ(xa−ya)

⟩
x1,y1

=

∫ m∏
b=2

{d3xbd3yb}ρ(x1, · · · ,xm) ρ(y1, · · · ,ym)
m∏
a=1

e−βϕ(xa−ya) (7.28)

で導入する．これは分散 2Aの正規化された Gauss分布 γ2A を用いると

e−βϕeff (r) = e−βϕ(r)
∫

d3r′ γ2A(r
′)q(A, T ; r − r′)m−1 (7.29)

と書き換えられ，ここに (m− 1)個のレプリカからの寄与の各々は

q(A, T ; r) :=
∫

d3r′ γ2A(r
′) e−βϕ(r−r′)

=
1

r
√
4πA

∫ ∞

1

duu

[
e−

(r−u)2

4A − e−
(r+u)2

4A

]
e−βϕ(u) (7.30)

である．［2行目の球殻積分ではハードコア球 (直径 d = 1)に対し e−βϕ(u) = Θ(u− 1)となることを念頭に積

分範囲を設定している．］積分を実行すると

q(A, T ; r) =
1

2

(
2 + erf

[
r − 1

2
√
A

]
− erf

[
r + 1

2
√
A

])
+

4A3/2β

(1 + 4Aβ)
√
πr

[
e−

(r−1)2

4A − e−
(r+1)2

4A

]
+ e−

(r−1)2β
1+4Aβ

r + 4Aβ
r(1 + 4Aβ)3/2

(
erf

[
r + 4Aβ

2
√
A(1 + 4Aβ)

]
+ erf

[
1− r

2
√
A(1 + 4Aβ)

])

− e−
(r+1)2β
1+4Aβ

r − 4Aβ
r(1 + 4Aβ)3/2

(
erf

[
r + 4Aβ

2
√
A(1 + 4Aβ)

]
− erf

[
1 + r

2
√
A(1 + 4Aβ)

])
(7.31)

となる．ここに erf(x) := 2√
π

∫ x
0
e−t

2

dt は誤差関数である．
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レプリカ液体の自由エントロピーは調和部分 Sh(m,A)と，有効ポテンシャル ϕeff を通して相互作用するレ

プリカ液体の部分 Sliq[ϕeff ]の和で書ける．次に

Q(r) := e−β[ϕeff (r)−mϕ(r)] − 1 (7.32)

を導入すると
e−βϕeff (r) = e−βmϕ(r)[1 +Q(r)]. (7.33)

さらに式 (7.30–31)で A = 0とおくと Q(r) = 0となる．そこで |Q(r)| ≪ 1を摂動として扱うと，レプリカ

系の自由粒子のエントロピーは

S(m,A;T, φ) := 1

N
lnZm

=Sh(m,A) + Sliq
(
T

m
,φ

)
+

3φ

π

∫
d3r gliq

(
T

m
,φ; r

)
Q(r) (7.34)

で与えられる．ここに

Sh(m,A) =
3

2
(m− 1) ln(2πA) + 3

2
(m− 1 + lnm) (7.35)

であり，Sliq(T, φ) = N−1 lnZliq は液体の自由エントロピー，gliq(T, φ; r)は第 4章で導入した液体の動径分

布関数 g2(r)である．

7.3.2項について

■式 (7.22–23)の確認 式 (7.20)をmで微分すると

∂S
∂m

=
∂Σ(f∗)

∂f

∂f∗

∂m
− βf∗ − βm∂f∗

∂m
= −βf∗

となるので，式 (7.23)を得る．ただし上式第 2辺の第 1項に式 (7.21):∂Σ(f∗)
∂f = βm を代入した．次に上式と

もとの式 (7.20)の差をとると

S −m ∂S
∂m

= [Σ(f∗)− βmf∗] + βmf∗ = Σ(f∗)

となって，式 (7.22)が導かれる．式 (7.22)第 2の等号は自明な恒等式である．

■式 (7.29)について m体分布 (7.27)を正直に代入すると，式 (7.28)は

e−βϕeff (x1−y1) =
1

(2πA)3m
e−βϕ(x1−y1)

∫
d3Xd3Y e−(x1−X)2/2Ae−(y1−Y )2/2A

×
m∏
a=2

∫
d3xad

3ya e
−(xa−X)2/2Ae−(ya−Y )2/2Ae−βϕ(xa−ya)

と書き換えられる．あるいは，これは後の式 (7.40)の補足となっている．

7.3.3　ハードコア近似

［式 (4.9)の］キャビティ関数 y(T, φ; r)を用いて 2体分布を g2(T, φ; r) = e−βϕ(r)y(T, φ; r)と表す．ハー

ドコア球に対しては e−βϕ(r) = Θ(r − d)である．今考えているレプリカ系では式 (7.33)より，|Q(r)| ≪ 1の

ときmϕ(r) ≈ ϕeff(r)となると考えられる．そこで

gliq

(
T

m
,φ; r

)
≈ e−βmϕ(r)yHS

liq (r) (7.36)
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と近似しよう．

上式 (7.36)を代入すると，式 (7.34)の右辺第 3項は

3φ

π

∫
d3r gliq

(
T

m
,φ; r

)
Q(r) ≈3φ

π
yHS
liq (φ)

∫
d3r e−βmϕ(r)Q(r)

=4φyHS
liq (φ)G(m,A;T ) (7.37)

となる．ここに

G(m,A;T ) := 3

4π

∫
d3r e−βmϕ(r)Q(r)

=3

∫ ∞

0

dr r2
[
e−βϕeff (r) − e−βmϕ(r)

]
(7.38)

である．すると式 (7.34)は

S(m,A;T, φ) ≈ Sh(m,A) + Sliq

(
T

m
,φ

)
+ 4φyHS

liq (φ)G(m,A;T ) (7.39)

となる．

最後に G(m,A;T )の別表現を紹介しておく．式 (7.27–29)を用いると∫
d3r e−βϕeff (r) =

1

V

∫
dx1dy1 e

−βϕeff (x1−y1)

=
1

V

∫ m∏
a=1

{
d3xad

3yae
−βϕ(xa−ya)

}
ρ({xa})ρ({ya})

=
1

V

∫
d3Xd3Y q(A, T ;X − Y )m =

∫
d3r q(A, T ; r)m (7.40)

となる．上式 (7.40)を用いると式 (7.38)は

G(m,A;T ) = 3

∫ ∞

0

dr r2
[
q(A, T ; r)m − e−βmϕ(r)

]
(7.41)

と書き換えられる．

7.3.4　 T → 0でのジャミング転移

(1)枠組み

式 (7.39)に式 (7.35)を代入すると，∂S/∂A = 0の条件は[
A

1−m
∂G(m,A;T )

∂A

]
A=A∗(m;T,φ)

=
3

8φyHS
liq (φ)

(7.42)

となる．この解が A∗(m)である．

量 (7.30–31)は T → 0の極限で

g(A, T → 0; r) ≈Θ
(
r − 1√
4A

)
+ e−

β(r−1)2

1+4Aβ
r + 4Aβ

r(1 + 4Aβ)3/2
Θ

(
1− r√

4A(1 + 4Aβ)

)

≈Θ
(
r − 1√
4A

)
(7.43)
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となる．このとき上式 (7.42)は √
A∗(m;φ) =

1−m
8φyHS

liq (φ)Q0(m)
(7.44)

を与え，ここに

Q0(m) :=

∫ ∞

−∞
dt[Θ(t)m −Θ(t)] (7.45)

である．同様に複雑さ (7.22)は T → 0で

Σ(m;φ) ≈ Sliq(φ)−
3

2
ln[2πA∗(m;φ)]− 3m(1−m)

Q′
0(m)

Q0(m)
+

3

2
lnm− 3m (7.46)

となる．またガラス状態の圧力 (7.26)は

pglass(T ;φ) =
1

m∗

{
pliq

(
T

m∗ , φ

)
− 4φ

[
yHS
liq (φ) + φ

dyHS
liq (φ)

dφ

]
G(m∗,A∗;T )

}
. (7.47)

この式 (7.47)で T → 0の極限とをとる．

ここで A = αmとおき，レプリカトリックm→ 0とハードコア極限で

S(m,A;φ)→ SHS
0 (α;φ), G(m,A)→ GHS

0 (α)

と書くと，これらは

SHS
0 (α;φ) =− 3

2
[ln(2πα) + 1] + SHS

liq (φ) + 4φyHS
liq (φ)G

HS
0 (α), (7.48)

GHS
0 (α) =3

[√
πα(1 + 2α) erf

(
1

2
√
α

)
+ 2αe−1/(4α) − 4α

]
≈ 3
√
πα (7.49)

となる．式 (7.44)が α∗ の決定方程式となり，式 (7.49)を用いると√
α∗
HS(φ) =

1

4
√
πφyHS

liq (φ)
. (7.50)

レプリカトリックを用いることを念頭にm→ 0での振舞いを調べると，［式 (7.22)において］m(∂S/∂m)

は無視できるので，複雑さは
ΣHS

0 (φ) ≈ SHS
0 (α∗

HS(φ);φ) (7.51)

となる．式 (7.48–50)を用いると

ΣHS
0 (φ) =SHS

liq (φ)−
3

2
[ln(2πα∗

HS(φ)) + 1] + 3

=SHS
liq (φ)− 3 ln

( √
2

4φyHS
liq (φ)

)
+

3

2
. (7.52)

(2)ジャミング点の臨界密度

ジャミング点移転 φGCP は式 (7.24) と式 (7.52) から決まる．実際 Carnahan-Starling 公式 (4.22) と*82，

式 (4.11):

pliq =
βPliq

n
= −φ

dSHS
liq (φ)

dφ
= 1 + 4φyHS

liq (φ) (7.53)

*82 式 (4.22)は本来，低密度 φ < 0.49でしか有効でない．しかし定性的な洞察を得るために，高密度にも式 (4.22)を試論として援
用する．
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を用いると，

yHS
liq (φ) =

1− φ/2
(1− φ)3

, (7.54)

SHS
liq (φ) =1− ln

(
6φ

π

)
− φ(4− 3φ)

(1− φ)2
(7.55)

を得る．

ここで ΣHS
0 (φ)が φの単調減少関数であることを踏まえると，以下の手順で φGCP を数値的に決定できる．

1. 密度の最小値 φmin = 0と最大値 φmax = 1の間で初期密度 φ0 を選ぶ．

2. k 回目の試行で ΣHS
0 (φk) > 0ならば φmin = φk とし，ΣHS

0 (φk) < 0ならば φmax = φk とする．

3. φk を φk+1 = (φmin + φmax)/2に更新する．

4. 手続き 2,3を繰り返し，例えば δ = 10−12 として，

|φk+1 − φk| < δ が満たされれば収束したと判定する．

すると
φGCP ≈ 0.6836 (7.56)

が得られる*83．この値はランダム最密充填の値 φRCP ≈ 0.639に比べて高く，現実的でない．しかし曲がり

なりにもジャミング点を理論的に決定できた点は特筆に値する．

(3) φ < φGCP での圧力

ガラス状態の圧力 (7.47)を計算するには，m∗(T, φ)を決める必要がある．そこで式 (7.24)を踏まえ，m = 0

からm ̸= 0への相転移を念頭に，Σ(m;φ)をm = 0の周りに展開すると

0 ≈ ∂Σ(m;φ)

∂m

∣∣∣∣
m=0

m+
∂Σ(m;φ)

∂φ

∣∣∣∣
φ=φGCP

(φ− φGCP)

=− 3m∗ −

[
S ′liq(φGCP) +

3

φGCP
+

3yHS
liq

′
(φGCP)

yHS
liq (φGCP)

]
(φ− φGCP), (7.57)

すなわち

m∗ =M(φGCP)(φGCP − φ);

M(φGCP) :=−
1

3

[
S ′liq(φGCP) +

3

φGCP
+

3yHS
liq

′
(φGCP)

yHS
liq (φGCP)

]
(7.58)

を得る．Carnahan-Starling公式 (4.22)を用いると

m∗ ≈ 18.0096 (φGCP − φ) (7.59)

と書くことができ，複雑さも

ΣHS
0 (φ) ≈ 3M(φGCP)(φGCP − φ) ≈ 54.0288(φGCP − φ) (7.60)

*83 K. Suzuki and H. Hayakawa, unpublished (2015).
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図 49 状態方程式 (4.22)を用いて決めた無次元化圧力 (の逆数) 1/pliq(φ)と 1/pglass(φ)．実線が実現す

る圧力．(K. Suzuki and H. Hayakawa, unpublished (2015).)［本稿では教科書から図を採った．］

となる．以上の結果を代入すると，ガラス状態の圧力 (7.47)は

pglass(φ) ≈
1

M(φGCP)(φGCP − φ)

{
pliq(φ)− 4φ

[
yHS
liq (φ) + φ

dyHS
liq (φ)

dφ

]
GHS

0 (α∗
HS(φ))

}
φ=φGCP

=
3φGCP

φGCP − φ
(7.61)

となる．ただし

pliq(φ)− 4φ

[
yHS
liq (φ) + φ

dyHS
liq (φ)

dφ

]
GHS

0 (α∗
HS(φ)) =p

HS
liq (φ)− 3− 3φ

yHS ′

liq (φ)

yHS
liq (φ)

=3M(φ)φ (7.62)

を用いた．

ここで pliq(φ)と pglass(φ)が［図 49のように］φ ≈ 0.62 = φG でクロスオーバーする，すなわち

φ < φGでは pliq(φ) > pglass(φ), φ > φGでは pliq(φ) < pglass(φ)

となることに注意が必要である．より高密度の φ > φG がガラス状態，φ < φG が液体状態に対応すると考え

られる．

7.3.5　ソフト球のジャミング転移

(1) T → 0での自由エントロピー

粒子の柔らかさを直接考慮する代わりに，ここではパラメータ

τ := T/m, α := A/m (7.63)

を導入し (αは 7.3.4項 (1)で導入済み)，τ, αを小さい有限値に保ったまま T → 0,m → 0 (レプリカトリッ

ク)の極限をとる (したがって A → 0)．
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この極限で式 (7.39)を S(m,A;T, φ)→ S0(α, τ ;φ)と記すと，

S0(α, τ ;φ) = −
3

2
[1 + ln(2πα)] + Sliq(τ, φ) + 4φyHS

liq (φ)G0(α, τ) (7.64)

と書ける．ただしm≪ 1で

Sh(m,αm) =
3

2
m lnm+

3

2
(m− 1) ln(2πα) +

3

2
(m− 1)

=− 3

2
[1 + ln(2πα)] , (7.65)

Sliq(τ, φ) :=S
HS
liq (φ) + 6φyHS

liq (φ)S (τm), (7.66)

G0(α, τ) :=G(m,αm; τm) = GHS
0

(
α+

τ

4

)
−GHS

0

(τ
4

)
(7.67)

となることを用いており，ここに

S (x) :=

√
πx

2
(2 + x) erf

(
1√
x

)
+ x

(
e−1/x − 2

)
(7.68)

である．

ハードコアのときと同様に，α∗ は式 (7.42)を書き換えた

3

8φyHS
liq (φ)

=

[
α
∂G0

∂α

]
α=α∗(τ,φ)

(7.69)

から決まる．次いで S0(α∗(τ, φ), τ ;φ) =: S0(τ, φ)が求まる．
ジャミング点近傍での圧力と複雑さ Σ0 を決定したい．式 (7.64)と式 (7.48)を比較すると

lim
τ→0
S0(α, τ ;φ) = SHS

0 (α;φ)

が見出されるため，τ = 0がジャミング点に対応する．そこで式 (7.64)を τ = 0の周りに展開すると

S0(α, τ ;φ) =SHS
0 (α;φ) + τS1(α;φ) + o(τ), (7.70)

S1(τ ;φ) :=
∂S0(α, τ ;φ)

∂τ

∣∣∣∣
τ=0

= φyHS
liq (φ)

[
1

α
J0(α)− 6

]
(7.71)

JHS
0 (α) :=α

∂GHS
0 (α)

∂α
(7.72)

となる*84．
式 (7.71)最右辺の導出 (教科書 pp.148–149の脚注)

S1(τ ;φ) :=
∂S0(α, τ ;φ)

∂τ

∣∣∣∣
τ=0

=φyHS
liq (φ)

∂

∂x
GHS

0 (x)
∣∣∣
x=α

+ φyHS
liq (φ)

d

dx

(
6mL(x)−GHS

0 (x)
)∣∣∣

x=0
(7.73)

を考える．ただし GHS
0 (α, τ)は式 (7.49)で与えられ，また

L(x) :=
√
πx

2
(2 + x)erf

(
1√
x

)
+ x

(
e−1/x − 2

)
(7.74)

*84 L. Berthier, H. Jacquin, and F. Zamponi, Phys. Rev. E 84, 051103 (2011).
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である．ここで

6m
d

dx
L(x) =3m

√
π

x
erf

(
1√
x

)
+

9m
√
πx

2
erf

(
1√
x

)
+ 3me−1/x − 12m, (7.75)

d

dx
GHS

0 (x) =
3

2

√
π

x
(1 + 6x)erf

(
1

2
√
x

)
+ 3

[
e−1/(4x) − 4

]
(7.76)

のうち x → 0で発散する項は，それぞれの右辺の第 1項である．それらが相殺して式 (7.71)が有限に留まること

を要求すると，3m = 3/2, ∴ m = 1/2(̸= 0) (RSB)を得る．またこのとき

lim
m→1/2

d

dx

(
6mL(x)−GHS

0 (x)
)∣∣∣

x=0
= 6 (7.77)

が成り立つ．これは式 (7.71)角括弧内の第 2項と逆符号となっている．

平均ケージ半径 α∗(τ ;φ)は ∂S0/∂α = 0，すなわち

∂S0(τ ;φ)
∂α

(α∗(τ ;φ);φ) + τ
∂S1(τ ;φ)

∂α
(α∗(τ ;φ);φ) = 0 (7.78)

で決まる．α∗(τ = 0;φ) = α∗
HS(φ)に注意すると

α∗(τ ;φ) = α∗
HS(φ) + τb(φ) + o(τ)

と展開できる．

ここで式 (7.51)を思い出すと

S0(τ ;φ) =S0(α∗(τ ;φ), τ ;φ) = SHS
0 (α∗

HS(φ);φ) + τS1(α∗
HS(φ);φ) + o(τ)

=ΣHS
0 (φ) + τS1(φ) + o(τ) (7.79)

と書ける．ただし S1(φ) := S1(α∗
HS(φ);φ)である．なお Carnahan-Starling公式 (4.22)を用いると，数値的

には S1(φGCP) ≈ 3718.42と評価できる．

(2)エネルギーと圧力のスケーリング

1粒子あたりのエネルギー e，自由エネルギー f，およびエントロピー S は e = f+ TS で関係付けられる．
式 (7.20–21),(7.63)より

S0(τ ;φ) = lim
τ→0
S
(
T

τ
;T, φ

)
= Σ0(e

∗)− e∗

τ
, (7.80)

∂Σ0

∂e
(e∗) =

1

τ
. (7.81)

上式 (7.80)は

Σ0(τ, φ) =S0(τ ;φ) +
e∗

τ
≈ S0(τ ;φ) + τ

∂S0
∂τ

=ΣHS
0 (φ) + 2τS1(φ) (7.82)

と書き直せる．ただし最後の変形で式 (7.71),(7.79)を用いた．同様に 1粒子あたりのエネルギーは

e(τ, φ) = τ2
∂S0
∂τ
≈ τ2S1(φ) (7.83)

で与えられる．上式 (7.83)は等価的に τ ≈
√
e/S1 とも書ける．これを式 (7.82)に代入すると

Σ0(e, φ) = ΣHS
0 (φ) + 2

√
eS1(φ). (7.84)
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ここでジャミング点では，複雑さが
lim
τ→0

φ→φGCP

Σ0(τ, φ) = 0 (7.85)

となることを思い出すと，

τ∗(φ) ≈ − ΣHS
0 (φ)

2S1(φGCP)
≈ 7.265× 10−3(φ− φGCP). (7.86)

ただし式 (7.60)と S1(φGCP)の数値的評価を用いた．その結果，ジャミング点近傍 φ > φGCP での 1粒子あ

たりのエネルギーは
eGCP(φ) ≈ τ∗(φ)2S1(φGCP) ≈ 0.19626(φ− φGCP)

2 (7.87)

となる．

ジャミング点近傍でのジャミング相の圧力も同様に，式 (7.47),(7.63)に注意すると

Pglass(T = 0, φ) = lim
T→0

[nTpglass(T, φ)]

=
6φ

π
τ∗(φ)

{
pliq(φ)− 4φ

[
yHS
liq (φ) + φ

dyHS
liq (φ)

dφ

]
GHS

0 (α∗
HS(φ))

}
φ=φGCP

=
18

π
φ2
GCPM(φGCP)τ

∗(φ)

≈0.350322(φ− φGCP) (7.88)

と評価できる．これは数値計算等でよく知られている結果である．

7.4　ランダム行列理論

粒子配置が分かれば，固有モード解析からレオロジーが分かる (第 5章)．しかし粒子配置は理論的に決める
ことが難しく，また完全にランダムでもない．ただし摩擦のない粒子のジャミング転移では，ジャミング密度
φJ がランダム最密充填とほぼ一致することから，ジャミング点直上の粒子配置をほぼランダムと考えられる．
これに対しジャミング点より上の密度では，粒子間の相関のため配置がランダムとならない．この場合にも少
なくとも平均場近似の枠内では，Wishart行列 (ないしカイラル行列)と呼ばれるランダム行列が有効である
ことが提唱されている．
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• F. Vogel and M. Fuchs, Phys. Rev. Lett. 130, 236101 (2023).

7.4.1　WishartアンサンブルとMarčhenko-Pastur則

ランダム行列の一般論から始めよう．D 次元空間にランダムに分布している N 個の摩擦のない粒子を考え

る．全接触点数は N := NZ/2，全自由度はM := ND であり，［式 (7.1)の満たされる］等静状態を除けば，

これらは一致しない．
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ここで粒子番号と座標成分の組を通し番号 i (1 ≤ i ≤M)でラベルし，また n (1 ≤ n ≤ N )を接触点のラベ

ルとする．次に平均値 0の観測量 xni に対して，その分散から成るサンプル共分散行列

E = {Eij}, Eij :=
1

N

N∑
n=1

xni x
n
j (7.89)

を定義する．Hin = xni を成分に持つM ×N 行列 Hを導入すると，上式 (7.89)は

E =
1

N
HHT (7.90)

と書き直せる．

ここで Eは任意の実ベクトル v に対して

E = ET, and vTEv =
1

N
∥HTv∥2 ≥ 0 (7.91)

を満たす M ×M の正定値対称行列であり，対角化可能である．そこで E の固有値を λEk と書くと (k は固

有値を識別するラベル)，λEk ≥ 0が成り立つ．簡単のため固有値は縮退がないものとする．(縮退がある場合

にも，同じ固有値に属する線形独立な固有ベクトルを重複度の数だけ採って，同様に議論できる．) 以上は

N ×N の共分散行列

F :=
1

M
HTH, Fmn =

1

M

M∑
i=1

xmi x
n
i (7.92)

にも当てはまる．Fの固有値は λFk(≥ 0)で表す．

一般に N ×N の対称行列 Aとその固有値 λAk に対して，リゾルベント

GA(z) := (z1− A)−1 (7.93)

とその Stieltjes (スチルチェス)変換

gAN (z) =
1

N
Tr(GA(z)) =

1

N

N∑
k=1

1

z − λAk
(7.94)

を導入する．［GA(z)の直交変換の下で第 2辺のトレースが不変であることを踏まえ，GA(z)を対角化する基

底でトレースを評価すると式 (7.94)最右辺が得られる．］

リゾルベントは Green関数に関係する［5.5節と見比べよ］．他方で Stieltjes変換は状態密度に関係する．

実際［式 (5.72)にならって］，状態密度

ρAN (λ) :=
1

N

N∑
k=1

δ(λ− λAk ) (7.95)

を導入すると，これは Stieltjes変換と

gAN (z) =

∫ ∞

−∞

ρAN (λ)

z − λ
dλ (7.96)

で関係付けられる．|λAk/z| < 1では

1

z − λAk
=

1

z

∞∑
m=0

(
λAk
z

)m
, ∴ gAN (z) =

1

N

∞∑
m=0

1

zm+1

N∑
k=1

(λAk )
m
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となり，ここで［式 (7.94)第 2の等号と同様に］Tr(Am) =
∑N
k=1(λ

A
k )
m であることに注意すると，

gAN (z) =
∞∑
k=0

1

zk+1

1

N
Tr(Ak),

1

N
Tr(A0) = 1 (7.97)

と書き換えられる．よって N →∞での期待値

τ(Ak) := lim
N→∞

1

N
⟨Tr(Ak)⟩ (7.98)

を用いて，

gA(z) := lim
N→∞

⟨gAN (z)⟩ =
∞∑
k=0

1

zk+1
τ(Ak) (7.99)

と表される．他方でもとの定義式 (7.94)からは

gA(z) = lim
N→∞

1

N
⟨TrGA(z)⟩ (7.100)

が得られる．

粒子系に戻り，q := M/N = 2D/Z を導入しよう．ジャミング点より上の密度では接触点数は等静状態の

値より大きいので q ≤ 1である．また行列 Fの固有値のうちM 個は行列 Eの固有値と λFk = q−1λEk で関係

し，残り N −M 個はゼロである．したがって

gFN (z) =
1

N

N∑
k=1

1

z − λFk

=
1

N

(
M∑
k=1

1

z − q−1λEk
+ (N −M)

1

z − 0

)

=q2gEM (qz) +
1− q
z

(7.101)

を得る．M →∞の極限で上式 (7.101)は

gF(z) = q2gE(qz) +
1− q
z

(7.102)

を与える．

ここでM := z1− Aを

M =

(
M11 M12

M21 M22

)
, Q := M−1 =

(
Q11 Q12

Q21 Q22

)
(7.103)

とブロック分割すると，
Q−1

11 = M11 −M12(M22)
−1M21 (7.104)

が成り立つ．

note MQ = 1をブロック行列の積として書くと，例えば

M11Q11 +M12Q21 = 1, M21Q11 +M22Q21 = 0.

ここで第 2式を Q21 = −M−1
22 M21Q11 と書き換え，第 1式に代入すると上式 (7.104)が得られる．
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特にM11を 1×1のブロックに選んで良い．このときリゾルベント (7.93)のブロック行列 (GA(z))11 =

(M−1)11 = Q11 の逆行列 Q−1
11 = 1/(GA(z))11 は単なる逆数に過ぎない．また

[M12]1j = −A1j = −
1

N

N∑
n=1

H1nHjn, [M21]k1 = −Ak1 = − 1

N

N∑
s=1

HksH1s. (j, k = 2, · · · ,M)

したがって

1

(GA(z))11
=M11 −M12(M22)

−1M21

=z − A11 −
1

N 2

N∑
n,s=1

M∑
j,k=2

H1nHjn(M22)
−1
jk HksH1s

=z − A11 −
1

N

N∑
n,s=1

H1nΩnsH1s (7.105)

となる．ただし

Ωns :=
1

N

M∑
j,k=2

Hjn(M22)
−1
jk Hks (7.106)

であり，ここにM22, Hjn (j ≥ 2), Hks (k ≥ 2)は H1n とは独立である．

Hと Ωは独立であるとし，また観測量 xni は HHT = 1を満たすよう規格化されているとすると，式 (7.105)

の第 3項は
1

N

M∑
n,s=1

H1nΩnsH1s ≈
1

N
TrΩ

となる．ここで N →∞で γ2 := N−1TrΩ2 が有限であると仮定すると，上式は γN−1/2 のオーダーである．

したがって

1

(GA(z))11
=z − A11 −

1

N
∑

2≤j,k≤M

1

N
∑
n

HknHjn(M22)
−1
jk +O(N−1/2)

=z − A11 −
1

N
∑

2≤j,k≤M

Akj(M22)
−1
jk +O(N−1/2)

=z − 1− 1

N
TrA2G2(z) +O(N−1/2) (7.107)

と近似できる．ただし最右辺への書き換えでは A11 = 1 + O(N−1/2) に注意した．また A2 は残り (M − 1)

変数から成る共分散行列，G2［= (M22)
−1 = (z1− A2)

−1］はそのリゾルベントである．上式 (7.107)最右辺

の第 3項は

TrA2G2(z) =Tr
(
A2(z1− A2)

−1
)
= Tr

[
{−(z1− A2) + z1} (z1− A2)

−1
]

=− Tr1+ zTr
(
(z1− A2)

−1
)

=− Tr1+ zTrG2(z) (7.108)

と書き換えられる．これを式 (7.107)に代入しよう．
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note まず Tr1 =M − 1に注意すると，M →∞では

1

(GA(z))11
= lim
M→∞

[
z − 1− M

N

(
−M − 1

M
+ z

1

M
TrG2(z)

)]
=z − 1 + q − qz lim

M→∞

1

M
TrG2(z)

となる．

ただし q := M/N = O(1)である．ここで (M − 1)次正方行列 G2(z)とM 次正方行列 GA(z)に対する結果

はM →∞で一致することを考慮し，式 (7.100)を用いると

1

(GA(z))11
= z − 1 + q − qzgA(z) +O(M−1/2) (7.109)

を得る．ここからM →∞で
1

gA(z)
= z − 1 + q − qzgA(z) (7.110)

となる．これを解くと

gA(z) =
z + q − 1±

√
(z + q − 1)2 − 4qz

2qz

=
z − (1− q)±

√
z − λ+

√
z − λ−

2qz
(7.111)

を得る．ただし λ± := (1±√q)2 である．［これは以下において Aの最大・最小固有値と見なされる．］

ここで式 (7.94)で z = x− iη, N →M として，

gM (x− iη) = 1

M

M∑
k=1

x− λk + iη

(x− λk)2 + η2
(7.112)

を考える．［以降ラベル Aは省略する．式 (7.95)の状態密度 ρ(y)を用いると］虚部は

1

M

∑
k

η

(x− λk)2 + η2
=

∫ x+∆x

x−∆x

dy
ηρ(x)

(x− y)2 + η2
(7.113a)

となる．［ただし固有値の分布範囲 [λ−, λ+] ⊂ [x−∆x, x+∆x]は狭いと仮定し，被積分関数で ρ(y)→ ρ(x)

と近似した．］次に変数変換 u := (y − x)/η を行うと［積分範囲は u : −∆x/η → ∆x/η であり］，η → 0で∫ x+∆x

x−∆x

dy
ηρ(x)

(x− y)2 + η2
= ρ(x)

∫ ∞

−∞

du

u2 + 1
= πρ(x) (7.113b)

となる．したがって λ− < x < λ+ を満たす xに対して

ρ(x) =
1

π
lim
η→0+

Img(x− iη) =
√
(λ+ − x)(x− λ−)

2πqx
(7.114)

であり，最右辺では式 (7.111)を考慮した．

ところが定義より q ≤ 0であることを踏まえると，式 (7.111)は負号を採った場合に z = 0を極に持つ．こ

の極からの寄与を含めると，Wishartアンサンブルの固有値分布はMarčhenko-Pastur則

ρMP(x) =

√
(λ+ − x)(x− λ−)

2πqx
+
q − 1

q
δ(x)Θ(q − 1) (7.115)

で与えられる．
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7.4.2　ランダム行列理論のジャミングへの応用

ランダム行列理論をジャミング系に応用する準備として，プレストレスの概念を導入する*85．N 粒子系に

対して

相対位置ベクトル rij = ri − rj , 方向単位ベクトル r̂ij =
rij
rij

, 全ポテンシャル ϕN (rN ) =
1

2

∑
(ij)

ϕ(rij)

と書くと，5.4.3項で導入した Hesse行列は

Hij :=
∂2ϕN
∂ri∂rj

=

{
r̂ij r̂

T
ijϕ

′′(rij)− (1D − r̂ij r̂
T
ij)

[
−ϕ

′(rij)

rij

]}
δ⟨ij⟩

+
∑
j′( ̸=i)

{
r̂ij′ r̂

T
ij′ϕ

′′(rij′)− (1D − r̂ij′ r̂
T
ij′)

[
−ϕ

′(rij′)

rij′

]}
δij (7.116)

と表される．ただし 1D は D次元の単位行列であり，また

δ⟨ij⟩ =

{
1 (粒子 i, j が接触しているとき)

0 (粒子 i, j が非接触のとき)

と約束する．ここで粒子 iの粒径を di として，調和ポテンシャル

ϕ(rij) =
k

2
h 2
ij Θ(−hij); hij := rij −

di + dj
2

(7.117)

による相互作用を考える．ϕ′′(rij) = k > 0，ϕ′(rij) = khij < 0なので，式 (7.116)における 1階微分の項が

不安定性に寄与する．そこで 2項の比としてプレストレス

e := (D − 1)

⟨
− ϕ′(rij)

rijϕ′′(rij)

⟩
ij

= (D − 1)

⟨
di + dj
2rij

− 1

⟩
ij

(7.118)

を定義する (⟨•⟩ij は接触ペアにわたる平均)．ジャミング点では e = 0となる (アンストレス状態)．

Hesse行列を 1階微分と 2階微分の項に分けて

Hαβij =H
αβ(1)
ij + H

αβ(2)
ij ; (7.119)

H
αβ(1)
ij :=

NZ/2∑
µ=1

∂hµ
∂xi,α

∂hµ
∂xj,β

, H
αβ(2)
ij :=

NZ/2∑
µ=1

hµ
∂2hµ

∂xi,α∂xj,β
(7.120)

と書こう．ここで µ = (i, j)は接触点の指標であり，また

Z =
1

N

∑
i<j

Θ(−hij) (7.121)

は 1粒子あたりの接触点数である．

平均場近似 (添字MFで表す)では a, bを適当な定数として，Hesse行列が

Hαβij,MF = aWαβ
ij + be1αβij (7.122)

*85 M. Shimada, H. Mizuno, L. Berthier, and A. Ikeda, Phys. Rev. E 101, 052906 (2020).
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の形に書けると仮定する．ここに 1αβij = δijδαβ である．またジャミング点では配置がランダムであり，平均

ゼロ，分散 1の独立な Gaussianノイズ ξµi,α を用いて，Wαβ
ij はWishart行列

Wαβ
ij =

2

NZ

NZ/2∑
µ=1

ξµi,αξ
µ
j,β (7.123)

で与えられると仮定する．

ジャミング点では
H→ H(1), HMF → aW (7.124)

となる．よって定数 aは
TrH(1) = aTrW (7.125)

から定まる．ここで

∂hij
∂xk,α

= (δik − δjk)
xi,α − xj,α

rij
,

N∑
k=1

D∑
α=1

(
∂hµ
∂xk,α

)2

= 2

を用いると，式 (7.125)の左辺は

TrH(1) =
N∑
i=1

D∑
α=1

NZ/2∑
µ=1

(
∂hµ
∂xk,α

)2

= NZ (7.126)

となる．他方で式 (7.125)右辺は

aTrW =
2a

NZ

N∑
i=1

D∑
α=1

NZ/2∑
µ=1

(ξµi,α)
2 = aND (7.127)

である．これらを等置して

a =
Z

D
(7.128)

を得る．

bも同様に決定できる．TrH = TrHMF を仮定して式 (7.122)のトレースをとり，式 (7.125)を考慮すると

TrH(2) = beTr1 (7.129)

を得る．右辺において Tr1 = ND である．他方で

∂2hij
∂x 2

k,α

= (δik + δjk)
r 2
ij − (xi,α − xj,β)2

r 3
ij

,
N∑
k=1

D∑
α=1

∂2hij
∂x 2

k,α

= 2
D − 1

rij
(7.130)

を用いると，式 (7.129)の左辺は

TrH(2) =
N∑
i=1

D∑
α=1

NZ/2∑
µ=1

hµ
∂2hµ
∂x 2

i,α

= 2(D − 1)

NZ/2∑
µ=1

hµ
rµ

= −NZe (7.131)

となる．よって

b = −Z
D

(7.132)
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を得る．以上より式 (7.122)は

HMF =
Z

D
W − Z

D
e1 (7.133)

を与える．

式 (7.133)に対応して固有方程式も

HMF |φn⟩ = λn |φn⟩ , λn :=
Z

D
λMP
n − Z

D
e (7.134)

と書けるはずである．ここに λMP
n はWの固有値である．したがって HMF の固有値 λの分布 ρ(λ)はWの固

有値 λMP = D
Z λ+ eの分布 ρMP(λ

MP)と

ρ(λ) = ρMP(λ
MP)

dλMP

dλ
=
D

Z
ρMP

(
D

Z
λ+ e

)
(7.135)

で関係付けられる．ところで q = 2D/Z なので，［最小の λMP
n は λ− = (1 −√q)2 で与えられることとより

(7.4.1項)，］最小固有値は

λmin =
Z

D

(
1−

√
2D

Z

)2

− Z

D
e (7.136)

である．

ジャミング点では物質の安定性は臨界的であり，λmin → 0となると期待される．そこでジャミング点近傍

では，上式 (7.136)をゼロとおくと

Z(e) =
2D

(1−
√
e)2

(7.137)

を得る．これをジャミング点 e = 0の周りに展開すると

Z

2D
− 1 ≃ 2

√
e (7.138)

であり，圧力は P ∝ eを満たす．

振動数 ω =
√
λの状態密度は D(ω) = 2ωρ(λ = ω2)で求まり［5.5節］，

D(ω) = ω2
√
(1− e1/2)3{8− (1− e1/2)ω2}
2π{2e+ (1− e1/2)2ω2}

(7.139)

となる．

そこでMarčhenko-Pastur則に基づく式 (7.139)の理論曲線を，第 5章のように粒子配置をシミュレーショ

ンで与えてから固有値解析で得たデータ

M. Shimada, H. Mizuno, L. Berthier, and A. Ikeda, Phys. Rev. E 101, 052906 (2020).

と比較した結果を，図 50に示す*86．D = 3次元においてもプレストレス eが小さい場合は，ランダム行列を

用いた理論は，粒子配置をインプットに用いて得た状態密度をかなり正確に再現している．

*86 H. Ikeda and M. Shimada, Phys. Rev. E 106, 024904 (2022).
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図 50 様々な次元 D とプレストレス eに対する状態密度 D(ω)のプロット．［本稿では教科書から図を採った．］
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第 8章　まとめ

参考文献を本文中に明記しつつ，以下に全文を引用する：

ここまで非線形レオロジー：粉体の非平衡物理の概略を駆け足で紹介してきた．学部生向けに客観的な立場

で平易に書かれた前半に比べて，後半の記述は著者の研究や勉強した題材に偏ったものであり，計算の詳細が

必ずしも親切に書かれておらず，読者諸賢の批判を甘受せざるを得ない．それでも邦書で，粉体の非平衡統計

力学を 1冊のコンパクトな本にまとめることができたのは望外の喜びであり，本書を著した甲斐があったと自

負している．

本書で書き切れなかった話題は多々ある．そもそも本書は理論的側面に焦点 を充てており，実験的な記述

が薄い．いきおい粉体の示す非線形レオロジーの 多彩な側面は封印し，理想化された単純な系のみを扱った．

当然のことであるが，このような理想化によって失われた特徴は多々ある．

第 1章で少し紹介した静止粉体の統計力学の試み

• S. Edwards and R. Oakeshott, Physica A 157, 1080 (1989)

• A. Baule, F. Morene, H. J. Herrmann, and H. A. Makse, Rev. Mod. Phys. 90, 015006 (2018)

については一切説明を割愛した．この手法では第 5章での固有値解析と同様に粒子配置の情報をイ ンプット

する必要があり，その有効性について著者自身が必ずしも納得しきれていないためである．しかしながら統計

力学のアナロジーを温度が存在しない系にどのように適用するかについての興味深い理論体系になっており，

読者諸賢はその手法をマスターして，今後の研究の進展に寄与してほしい．

第 1章で触れたように非線形レオロジーの主たる対象は粉体ではなくコロイド (や高分子)である．名著が

ある高分子物理はともかくコロイド物理の非線形レオロジーに関する近代的名著はあまりないので，そのあた

りも発展系として詳細に論じる必要がある (レビューについては文献

C. Ness, R. Seto, and R. Mari, Ann. Rev. Cond. Matt. Phys. 13, 97 (2022)

を参照のこと．コロイドに関しては文献

W. B. Russel, D. A. Saville, and W. R. Schwalter, Colloidal Dispersions (Cambridge Univ. Press,

Cambridge, 1989)

あたりが標準的であり，その流体力学およびその相互作用については文献

S. Kim and S. J. Karrila, Microhydrodynamics: Principle and Selected Applications (Dover,

New York, 2005)

が詳しい)．それに関連して粒子間摩擦のある高密度系で観測される不連続シアシックニングについての微視

的理論を本書で論じることができなかったのは心残りである．何しろ現象論 (例えば文献M. Wyart and M.

E. Cates, Phys. Rev. Lett. 112, 098302 (2014))を超えた不連続シアシックニングの理論がないので，摩擦

ありと摩擦なしのクロスオーバーの理論を構築する方が先決であると思われる．同様に，非線形レオロジーの

白眉であるインパクトに伴うサスペンションの硬化現象についても本書で説明することができなかった点であ

り残念である．粒子に摩擦があると回転の自由度がカップルして，フラストレーションの度合いも非常に高く

137



なる．第 1章で触れたように不連続シアシックニングのみならずジャミング転移も劇的に変わる．その性質に

ついては読者諸賢が研究論文をベースに理解していくほかはないと思われる．

第 5 章に関しては，粒子位置の情報をカンニングせず理論を構成することができなかったのは心残りであ

る．第 7章で紹介した，ランダム行列理論で DOSを計算し，固有関数の情報を何らかの近似を行って表現で

きれば剛性率の計算が可能になる．このあたりが今後の発展の方向性である．また，Eshelby理論を適用して

何が言えるのかについても考える必要があるだろう．さらに，第 3章で簡単に触れたビンガム流体等の塑性流

動の基礎付けをする必要がある (レビューとして文献

A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat, Rev. Mod. Phys. 90, 045006 (2018)

がある)．その記述のために HLモデル

P. Hébraud and F. Lequeux, Phys. Rev. Lett. 81, 2934 (1998)

が広く使われており，塑性流動の導出に成功している

E. Agoritsas, E. Bertin, K. Martens, and J.-L. Barrat, Eur. Phys. J. E 38, 71 (2015)

が，垂直応力と接線応力のカップリングがなく，改善の余地があるように思われる．この問題は，ほぼ意図的

に触れなかった応力なだれが多数生じた状態の特徴付けと絡んでおり，今後非常に大事になる．

第 6章では境界および重力の影響のない，過度に理想化された粉体ガスを論じたが，それを現実的な状況に

適用する必要がある．また単分散粒子系ではなく，多分散粒子系を扱い，偏析や拡散を論じる必要がある．た

だし，境界や重力の影響が無視でき，偏析もない場合の理論は既にできているので，労力をかければ，それを

拡張するのは可能である．また，本書で述べた運動論では φ > 0.49のより粉体らしい相関があり，動的不均

一性のある系の記述には成功していない．高密度粉体ガス系での運動論は統計物理的にも大事かつ興味深い問

題である．

第 7章では，摩擦のない粒子系のジャミング転移を論じたが，第 1章で触れたように粒子間摩擦があるとシ

アジャミングが生じるだけでなく，ジャミング転移の様々な特徴が大きく変わる．それらについても今後系統

的に論じる必要がある．

このように本書は非線形レオロジー：粉体の非平衡物理の入り口を駆け足で紹介したにすぎず，本書を参考

にして，読者諸賢が今後この分野での研究のフロントで活躍されることを切に望んでやまない．
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